
A Bound on Price Impact and Disagreement∗

Philippe van der Beck†, Lorenzo Bretscher‡, Julie Zhiyu Fu§

August 31, 2025

[Click here for the latest version]

Abstract

Asset prices are highly volatile, yet portfolio flows – changes in portfolio holdings – are rela-

tively small. This reveals a fundamental tension between the price impact of portfolio flows and

the agreement among investors: if price volatility is high while portfolio turnover is low, then either

market participants largely agree with each other or they are not sensitive to price changes (they

are “inelastic”), resulting in large price impacts of portfolio flows. We formalize this trade-off and

demonstrate that the ratio of return volatility to portfolio turnover provides a lower bound on price

impact, conditional on the level of investor disagreement. Using several measures from survey data,

we document substantial disagreement, implying meaningful lower bounds on price impacts. The

bounds align closely with reduced-form estimates from a variety of quasi-experiments, such as price

impacts from index reconstitutions. We demonstrate how these bounds vary across horizons, differ-

ent assets, and at various levels of aggregation, including the aggregate stock market, and discuss

their implications for asset pricing models. We argue that in such markets with high disagreement

and price impact, observed trading activity is not peripheral but central to understanding asset

price movements.
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1 Introduction

It is uncontroversial that investors often disagree with each other. Such disagreement gives rise to

heterogeneous portfolio holdings and flows. However, how much flows matter for asset prices is still

an active debate, reflecting two different views on asset pricing. In one view, investors are highly

elastic with respect to asset prices, and hence the market clears trading with little price adjustment.

Under this view, quantity data – portfolio holdings and flows – tells us little about the drivers of asset

prices. By contrast, in the inelastic market view, quantities have a significant impact on prices, making

portfolio holdings and flows central to understanding asset prices.

In this paper, we argue that, given observable moments on quantities and prices, if we acknowledge

that investors disagree with each other, we must accept the inelastic market view – that trading has

a large price impact. Our argument rests on a simple observation: asset prices are highly volatile,

yet portfolio flows – changes in portfolio holdings – are relatively small. This observation creates a

trade-off between investor agreement and price impact : with large agreement among investors, one can

easily generate little (or no) trading alongside volatile prices. However, with large disagreement, one

might expect to observe large trading among investors. Yet we do not, despite high price volatility.

Hence, this observation must imply that investors are insensitive to price changes, i.e., price-inelastic.

As a result, small portfolio flows have large price impacts. This fundamental tension between price

impact and agreement forms the core insight of our paper.

We formalize the trade-off between price impact and agreement mathematically as a simple bound

based on two directly observable moments: portfolio flow volatility σq and return volatility σp. Within

our framework, demand shifts are defined as any change in investors’ portfolio choice, holding prices

constant (e.g., cash flow news). We define investor agreement ρ, loosely speaking, as the correlation

of demand shifts across investors.1 Demand shifts can diverge for many reasons beyond disagreement

about cash-flow news – for example, disagreement about discount rates, changes in regulatory frictions,

etc. Importantly, what matters is the agreement in demand shifts, as opposed to agreement in levels.

Investors may strongly disagree about the level of prices, yet still largely agree on how new information

changes prices. Price impact M is given by the percentage change in prices per 1% demand shift.

Our main theoretical result establishes that the price impact M is bounded from below as follows:

M ≥ σp
σq

×
√

1

ρ
− 1. (1)

1Formally, ρ is defined as the share of demand shift variation explained by the size-weighted cross-investor average.
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The bound captures our key insight: high return volatility σp relative to portfolio flow volatility σq

(i.e., a high p/q volatility ratio) implies either a high price impact (high M) or high agreement among

investors (high ρ). To understand the intuition of our bounds, consider the analogy of total demand

shifts as an iceberg. The size of an iceberg is determined by the total of demand shifts. Only dis-

agreement surfaces and becomes visible as observable portfolio flows, while the common demand shifts

that move all investors in the same direction remain submerged and unobserved. Investor agreement

ρ determines the relative size of the observable flows versus the unobserved common demand shifts.

When investors perfectly agree with each other in updating their beliefs (ρ → 1), observed portfolio

flows represent only small tip of a large iceberg. Price variation is primarily driven by large unobserved

common demand shifts. In this case, the high p/q volatility ratio are uninformative about the price

impact. Conversely, when investors disagree with each other (small ρ), the visible flows represent a

significant portion of the total demand shifts. Hence, low observed portfolio flows imply small total

demand shifts, and large return volatility can only be reconciled with a substantial price impact.

These two scenarios, while both consistent with observed flow and return volatilities, have funda-

mentally different implications for our understanding of asset prices. In the case of elastic investors

that largely agree with each other, portfolio holdings and flows are merely a sideshow – they capture at

best minor deviations from common demand shifts which drive prices. In such a world, asset prices can

be well-described by representative agent models, while portfolio flows across investors are a largely

irrelevant byproduct of price formation. In contrast, in the case of inelastic investors that disagree

with each other, portfolio flows carry substantial incremental information about asset prices. Here,

observed quantities are no longer irrelevant but central to our understanding of asset prices.

The derivation of our bound relies on a set of fairly general assumptions. Most notably, following

the long tradition of log-linearization in finance and the growing literature on demand-system asset

pricing (Campbell and Viceira, 2002; Koijen and Yogo, 2019), we assume that portfolio choice problems

can be approximated to a first order by linear demand curves. Importantly, we impose no structural

assumptions on the source or structure of demand shifts, nor on particular microfoundations of the

elasticities. This makes our bound empirical in nature, similar in spirit to the Hansen–Jagannathan

bound (Hansen and Jagannathan, 1991). Due to the model-agnostic nature of the bound, it can serve

as a diagnostic tool when developing structural models to rationalize these moments. It can also

be used in empirical studies when estimating price impact M or agreement ρ to back out the other

parameter, thus providing a more comprehensive picture of the market environment.
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We apply our bound in Equation (1) to the US stock market. Returns are volatile: an average

stock has a return volatility of σp ≈ 20% at the quarterly frequency. On the other hand, flow volatility

is not much larger. We show that flow volatility σq can be simply measured with “portfolio turnover”,

the average net portfolio reallocations across all investors over the period of interest. At the quarterly

frequency, the average stock has a portfolio turnover of around 20%, resulting in a p/q volatility ratio of
σp

σq
≈ 1. The common assertion of excess trading activity is typically based on the gross trading volume,

which is the sum of all trading in one period, including transitory round-trip trades. It significantly

overstates the actual portfolio turnover that persists over the period of interest. This parallels to how

return volatility is measured – using net price changes over given periods, rather than summing all

instantaneous price changes within periods. Similarly, we should also net out intra-period round-trip

trades when assessing flow volatility.

Flow and return volatilities are readily measurable in the data but investor agreement ρ, defined

as the correlation of investors’ demand shifts, is inherently unobservable. However, there is substantial

empirical evidence confirming that investors’ demand shifts are far from perfectly correlated (ρ ≪

1). Investors differ markedly in their cash-flow forecasts, regulatory constraints, return expectations,

trading patterns, and portfolio compositions.2 Given this evidence, a highly elastic market at the

quarterly frequency appears unlikely through the lens of our bound. For example, as σp

σq
≈ 1 for the

average stock, achieving a price impact below 0.1 requires almost perfect agreement among investors,

i.e., ρ > 0.99.

To estimate the price impact bound, we incorporate empirical proxies for investor agreement ρ. Our

goal is not to obtain precise point estimates, but to demonstrate that ρ lies within a moderate range –

avoiding pathological extremes near zero or one. Our baseline proxy measures agreement through the

common variations in forecast updates on earnings across analysts. For the average U.S. firm, forecast

updates of earnings per share (EPS) across analysts explain approximately 58% of the total variation

in one-quarter-ahead EPS updates, yielding ρ = 0.58. When we use long-term growth (LTG) forecasts

instead, we obtain ρ = 0.27. Applying these agreement measures to our model generates stock-level

price impacts of 0.75 and 1.0, respectively. We also draw on proxies for ρ from event studies and

structurally inferred demand shifts, and find no evidence that ρ takes implausibly high values.

The model parameter ρ should reflect all forms of heterogeneity in demand shifts, including belief
2See, among others, Giglio et al. (2021), Koijen and Yogo (2019), Dahlquist and Ibert (2024), Couts et al. (2024),

Barber and Odean (2008), Guiso et al. (2008), Kandel and Pearson (1995), Barber and Odean (2001), Bretscher et al.
(2025), and Bretscher et al. (2025). In addition, the vast investor disagreement can be directly observed by the fact that
the number of different mutual funds catering to the preferences and beliefs of different investors exceeds the number of
stocks in the U.S. (see Investment Company Institute (2025)).
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disagreement, regulatory constraints, and preferences, which may not be fully reflected in our empirical

proxies for ρ. However, our measures suggest that the true value of ρ lies in the moderate range

rather than at the extremes. In the moderate range,
√

1
ρ − 1 is relatively flat, making it insensitive

to variations in ρ. Consequently, cross-stock variation in our bounds is driven primarily by the p/q

volatility ratio, σp

σq
. In fact, a simplified price impact estimate M̃ ≡ σp

σq
(which implicitly assumes

ρ = 0.5) performs nearly as well as the general bound.

We empirically validate our price impact bounds against well-documented demand shock events,

including S&P 500 index inclusions and mutual fund flow-induced trading. Our bound-implied price

impact estimates exhibit strong correlations with actual price movements across these events. Stocks

with larger bounds experience significantly higher price changes for a given demand shock. For in-

stance, the price impact of flow-induced trades increases monotonically with our bounds. In contrast,

traditional liquidity measures based on gross trading volume, such as Amihud’s (2002) illiquidity ratio,

show no significant explanatory power for price impacts of persistent demand shifts. Constructing our

bounds with gross trading volume (rather than portfolio turnover) reveals no significant relationship

to event study price impacts, highlighting that portfolio turnover is not merely a modeling choice but

an economically meaningful quantity.

We further examine how the price impact bounds vary at different horizons, across assets, and

at different levels of aggregation. First, price impact declines monotonically with horizon – that is,

demand elasticities increase at longer horizons. Daily price impacts are substantially larger than

quarterly impacts, which in turn exceed annual impacts. Second, while daily price impact has declined

significantly from 1990 to 2024, quarterly and annual price impacts have remained largely unchanged.

Third, consistent with information-based theories, large-cap stocks exhibit smaller price impact, while

stocks with higher systematic risk show larger price impact, consistent with risk-based foundations.

Momentum stocks also experience higher price impact, reflecting upward-sloping demand curves of

momentum investors. Fourth, examining our bounds at different levels of aggregation reveals that

portfolio turnover falls quickly as aggregation increases. This is intuitive as porfolio flows in similar

assets offset each other.3 Return volatility also declines with aggregation due to diversification of

idiosyncratic risks. Overall, we find that turnover decreases at a higher rate compared to return

volatility which implies that our price impact bounds rise monotonically with aggregation – from

individual stocks, to industries, to size/value portfolios, and ultimately to the market, which shows

the highest impact (Gabaix and Koijen (2021)).
3For example, trading Apple against Microsoft creates stock-level turnover but none at the tech-sector level.
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Our bounds provide a measure of how informative portfolio flow data is for asset prices. When

demand is highly elastic, portfolio flows reveal little about prices as demand shifts can be easily

accommodated with minimal price impact. Conversely, when demand is inelastic, portfolio flows are

highly informative for prices. Empirically, our bounds suggest that the stock market is closer to the

"inelastic and heterogeneous" paradigm than to the "elastic and homogeneous" paradigm. In such

markets, observed portfolio flows reveal a significant portion of the underlying demand variation, and

have significant impact on prices. Echoing Hong and Stein (2007) and more recently Gabaix and Koijen

(2021), our bounds demonstrate that trading volume is not a mere byproduct of price formation, but

is essential for understanding asset prices and financial market volatility.

Related Literature. This paper offers a synthesis of the literatures on price impact and on in-

vestor disagreement. First, a large strand of the literature documents that investor-specific demand

shifts can have a meaningful long-term price impact. For example, a series of papers studies price

changes upon inclusion or deletion of a stock in an index (see, among others, Shleifer, 1986, Harris

and Gurel (1986), Wurgler and Zhuravskaya (2002), Kaul et al. (2000), Chang et al. (2015), Pavlova

and Sikorskaya (2022), Greenwood and Sammon (2025), and Aghaee (2025)). Coval and Stafford

(2007), Lou (2012), and Edmans et al. (2012) document persistent price changes due to flow-induced

trading by mutual funds. Hartzmark and Solomon (2021), Schmickler and Tremacoldi-Rossi (2022),

Kvamvold and Lindset (2018), and Honkanen et al. (2025) document that reinvested dividend payouts

significantly affect asset prices. Our price impact bounds provide an ex ante statistic that serves as a

simple benchmark based on observable empirical moments. In addition, finding exogenous variation

in demand to identify price impact for aggregated portfolios such as the total stock market is often

difficult. Our bounds can easily be computed at different levels of aggregation for all asset classes

and thus provide a useful sanity check for event studies. More importantly, event-study evidence is

often difficult to obtain, particularly when researchers face limited cross-sectional variation over time

or insufficient time-series variation across assets. Estimating price impacts for aggregated portfolios

– such as entire asset classes – is especially challenging, as it requires identifying demand shifts that

are both exogenous and sufficiently large. Our estimation-free bounds offer a practical alternative by

providing theoretically grounded benchmarks for the expected price impact in settings where event

studies are infeasible.

More broadly, our bounds contribute to the burgeoning demand-system asset-pricing literature

that jointly models investors’ portfolio allocation and asset prices (Koijen and Yogo, 2019; Gabaix and
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Koijen, 2021).4 Several recent papers in this literature have alluded to the tension between elasticity

and investor heterogeneity. Gabaix and Koijen (2021) argue that the relatively stable equity share

of institutional investors implies inelasticity at the aggregate market level. Their granular instrument

variable (GIV) estimator imposes a factor structure on demand shifts and identifies investor agreement

by extracting common factors from investor flows. More recently, Gabaix et al. (2025) compute risk

transfer – changes in market risk exposure by households, a measure conceptually close to the portfolio

turnover for the aggregate market – is very small at the quarterly frequency. They demonstrate that

standard macro-finance models with high price elasticities cannot reconcile the tension between the

heterogeneity in holdings and the small risk transfer in flows. Complementary to their approach, our

bounds are effectively model-free. We do not take a stand on a specific model linking heterogeneous

portfolios to unobserved demand shifts. Instead, we use observed flow and price volatility to bound

investor disagreement and price impact. Moreover, we compute bounds for individual stocks, different

portfolios, and the aggregate stock market, and test their empirical relevance in event studies.

Our paper also contributes to the literature on investor disagreement. For example, Kandel and

Pearson (1995) and Bamber et al. (1999) document that earnings announcement days consistently

feature abnormally high trading volume and small price changes. In those papers, the combination

of high volume and low volatility is typically interpreted as evidence of differential interpretations of

public signals, i.e., disagreement. Hong and Stein (2007) advocate for models featuring disagreement,

given the enormous trading volume observed even at times when return volatility is low.5 While we

find that portfolio turnover is low at longer horizons, we argue that this does not reflect an absence

of disagreement. Instead, it reflects the inelasticity of market participants, which amplifies the price

impact of investor-specific demand shifts and serves as an empirically useful measure of long-term price

impact.

Third, by drawing a distinction between gross trading volume and portfolio turnover, our paper

naturally contributes to the literature on market liquidity.6 We highlight that the distinction between

trading volume and portfolio turnover helps explain why traditional liquidity measures – such as those

in Amihud (2002), Pástor and Stambaugh (2003), and Brennan et al. (2013) – may be less suitable
4See, among others, Koijen and Yogo (2020), Haddad et al. (2021), Han et al. (2021), Koijen et al. (2021), Fang et al.

(2022), Coqueret (2022), Huebner (2023), Jiang et al. (2022), Jiang et al. (2024), Koijen et al. (2024), Jansen (2025),
Tamoni et al. (2024), Bretscher et al. (2025), Chaudhary et al. (2024), Jansen et al. (2024), Darmouni et al. (2022).

5See, for example, Harris and Raviv (1993) and Banerjee and Kremer (2010) for theoretical models reconciling the
observed empirical patterns.

6See, among others, Constantinides (1986), Brennan and Subrahmanyam (1996), Heaton and Lucas (1996), Vayanos
(1998), Brennan et al. (1998), Datar et al. (1998), Chordia et al. (2001), Amihud (2002), Jones (2002), Huang (2003),
Pástor and Stambaugh (2003), Anshuman and Viswanathan (2005), Brunnermeier and Pedersen (2009), Garleanu and
Pedersen (2007), and Bouchaud (2022).
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for capturing long-term price impact from persistent demand shifts. Intuitively, our bounds on price

impact can be viewed as a long-horizon counterpart to the illiquidity measure proposed by Amihud

(2002).

The remainder of the paper is structured as follows. Section 2 lays out the main theory. Section 3

describes the data, construction of portfolio turnover and discusses its differences from gross trading

volume. Section 4 constructs the price impact bounds for the cross-section of U.S. equities; Section 5

tests the empirical relevance of the bounds using different event studies. Motivated by the empirical

relevance, Section 6 then examines the heterogeneity of these bounds outside of event studies – over

time, across assets, and at different levels of aggregation. Section 7 concludes.

2 Theory

In this section, we lay out our main framework and derive the price impact bound.

Notation. Throughout, we use i = 1, 2, ..., I to denote the investor, n to denote the asset. We

use Si(n) to denote the ownership share of investor i in the market for asset n. As a short-hand,

we use subscript S in place of i to denote size-weighted aggregation, i.e., xS(n) =
∑I

i=1 Si(n)xi(n).

To highlight the cross-sectional expectation-like feature of the size-weighted aggregation, we also use

Êcs
S [xi] =

∑I
i=1 Sixi, and suppress the subscript S when there is no ambiguity.

2.1 The Demand Curve

For illustration purposes, we start by deriving the price impact bound in a single-asset portfolio-choice

model. Then we show in Section 2.6 that our bound applies to a multi-asset setting as well.

Consider a generic portfolio allocation Qi,t(n) = Qi(Pt(n), Ui,t), where Qi,t(n) is the quantity of

asset n held by investor i at time t, Pt(n) is the price of asset n at time t, and Ui,t captures all other

factors that affect investor i’s demand for asset n at the given price Pt(n). These factors can include

the investor’s wealth, the risk-free rate, risk aversion, uncertainty, prices of substitutable assets, and

other relevant variables.

We take a log-linear approximation of the portfolio choice problem around the long-run mean and

take first-differences to obtain a linear demand curve:

∆qi,t(n) = −ζi(n)∆pt(n) + ui,t(n) (2)
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where ∆qi,t(n) is the percentage change in holdings of asset n by investor i at time t (which we refer to

as portfolio flows or simply flows), ∆pt(n) is the percentage price change of asset n at time t, referred

to as its return at time t, and ui,t(n) is the demand shift for investor i at time t. For simplicity, we

assume that their time-series means are equal to zero. The parameter ζi(n) is the investor-asset-specific

elasticity, which measures how much investor i’s demand for asset n changes when the price changes

by 1%, ceteris paribus.

To provide intuition for the different components of the demand curve, we can connect this linear

specification with canonical models. In Appendix B, we sketch several microfoundations, including

standard portfolio choice under CRRA utility. Our preferred interpretation draws on learning-from-

price models such as Grossman and Stiglitz (1980) and Hellwig (1980). In these models, the demand

shift Ui,t represents noisy private signals about the asset’s fundamental value, while the price Pt(n)

aggregates information across investors. The price elasticity ζi(n) captures the trade-off between the

informativeness of one’s private signal and the market price: the more accurate the market price is

relative to the investor’s private signal, the more the investor relies on the price, resulting in a more

inelastic demand curve (smaller ζi(n)).

While learning-from-price models provide a natural framework for interpreting elasticity and dis-

agreement, we do not restrict our analysis to this interpretation. Instead, we specify the demand curve

generically. In any asset pricing model that features portfolio choice, either explicitly or implicitly,

investor demand can be decomposed into changes due to price movements and changes holding prices

fixed.7 Our bound holds under these different model frameworks. Moreover, the underlying model does

not need to be static: in dynamic settings, investors care about the path of future expected returns,

while the market clears through the current price, which summarizes the market’s expectations about

future returns. In this case, investors’ demand shifts contain beliefs about future expected returns

that deviate from those implied by the current price. Furthermore, our framework also readily ac-

commodates multiple assets – as shown in Section 2.6, a multi-asset system also yields a single-price

demand representation as in (2). Our only assumption at this stage is that a first-order log-linearization

provides a reasonable approximation of the true portfolio choice problem.

For a generic demand curve specified in Equation (2), our goal is to connect elasticity and the

correlation of demand shifts (agreement) to observable moments: volatilities in returns and portfolio

flows. To do so, we first study how the return and flow volatilities are determined in the log-linear

model.
7See Koijen and Yogo (2025) for further discussion on microfoundations.
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In the remainder of this section, we proceed stock by stock and suppress the stock index n for

notational ease, re-introducing it in the multi-asset extension.

2.2 Elasticity and Price Impact

The flip side of elasticity is the price impact per unit of demand shift. To see that, we impose the

market clearing condition – all trades sum to zero. Denote Si =
Qi∑
i Qi

the ownership share of investor

i in the market for asset n. The market clearing condition is given by:

∑
i

Si∆qi,t = 0 (3)

Price adjusts to clear the market, and hence,

∆pt =
1

ζS
uS,t (4)

where ζS =
∑

i Siζi and uS,t =
∑

i Siui,t are the aggregate elasticity and demand shift given by the

size-weighted averages of investor-specific elasticities and investor-specific demand shifts respectively.

The inverse of the aggregate elasticity, 1
ζS

, quantifies how much the price adjusts for a 1% aggregate

demand shift of total outstanding shares. Therefore, the lower the aggregate demand elasticity, the

larger is the price adjustment per unit of demand shift which is needed to induce investors to step in.

We denote the inverse of the aggregate demand elasticity as M and refer to it as the price impact or

multiplier of asset n.

The price impact M links return volatility to the volatility of the aggregate demand shift, given

by:

σ2
p = M2 ·Var(uS,t) (5)

Through the lens of this framework, the well-known excess volatility puzzle implies that either

standard models do not generate sufficiently volatile aggregate demand shifts, or that agents are too

responsive to price changes in these models, i.e., the price impact M is too small.

2.3 Portfolio Flows and Investor Agreement

To illustrate the relationship between portfolio flows and investor agreement, we first consider the case

with homogeneous elasticities across investors: ζi = ζS = ζ. This assumption will be relaxed later.

Under the homogeneous elasticity assumption, we can plug the equilibrium price equation (4) into the
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demand equation (2) to have:

∆qi,t = ui,t − uS,t. (6)

Hence, trades reflect the differences of investors’ demand shifts from the average demand shift in the

market.

The size-weighted average variance of ∆qi,t is given by:

σ2
q ≡

I∑
i=1

SiVar (∆qi,t)

=

(
I∑

i=1

SiVar(ui,t)

)
−Var (uS,t)

(7)

To derive the second equality, we use Equation (6) and the identity
∑I

i=1 SiCov(ui,t, uS,t) = Var(uS,t).

Hereafter, we refer to σq as flow volatility. It measures the total amount of trading activity by investors.

The theoretical analysis focuses on flow volatility defined in (7); later we show that portfolio turnover

across all investors is a close proxy for flow volatility, and use the terminology interchangeably when

the distinction is unimportant.

Defining ρ ≡ Var(
∑I

i=1 Siui,t)∑I
i=1 Si Var(ui,t)

, we can rewrite flow volatility as follows:

σ2
q = Var(uS,t)

(
1

ρ
− 1

)
. (8)

We refer to ρ as investor agreement and D :=
√

1
ρ − 1 as investor disagreement. To understand

the interpretation, note that it is the share of demand shifts that is explained by the size-weighted

cross-sectional average of the demand shifts. To see this most clearly, we can use the cross-sectional

expectation notation Êcs
S to express it as follows:

ρ =
Var

(
Êcs [ui,t | t]

)
Êcs [Var (ui,t | i)]

∈ [0, 1]. (9)

Empirically, ρ is the R2 of the (size-weighted) time fixed effects of the demand shifts. As an R2, it ranges

between 0 and 1. When ρ = 1, all investors have identical demand shifts, and hence are homogeneous;

when ρ → 0, the demand shifts are completely heterogeneous across investors.8 Alternatively, with

8With finite number of investors, ρ ≥
∑

i S2
i σ

2
i∑

i Siσ
2
i

if the covariances of the demand shifts across investors are non-
negative, and it reaches the lower bound when shocks are completely uncorrelated. It reaches zero only if investors
demand completely offset each other in aggregate.
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homoskedasticity, the agreement ρ can also be interpreted as the average pairwise correlation of the

demand shifts ρ ≈
∑I

i=1

∑
j ̸=i SiSj corr(ui,t, uj,t).9

Note that disagreement comes not only from differences in idiosyncratic demand shifts, but also

from differences in the responses of different investors to common factors. To see this, suppose investor-

specific demand shifts are determined by their differential exposure λi to a single common shock ηt,

which has unitary variance, i.e., ui,t = λiηt. Let Êcs denote the size-weighted cross-sectional average,

we have:

ρ =
Êcs [λi]

2

Êcs
[
λ2
i

] = (1 + V̂ar
cs
(λi)

Êcs [λi]
2

)−1
. (10)

This implies that investor agreement decreases in the variation of the exposures to the common shock

ηt across investors. Further, agreement can be arbitrarily close to zero when the variation in λi relative

to its mean is large. In sum, investors can have low agreement even if their idiosyncratic demand shifts

can be fully explained by a common shock, ηt, provided their exposures to that shock differ.

With this interpretation, Equation (8) states that flow volatility is the product of the size of

aggregate demand shifts and the amount of investor disagreement. The extent to which highly volatile

aggregate demand translates into flow volatility (turnover) is driven by how dissimilar investors are in

their demand shifts.

2.4 The Price Impact Bounds

To derive the bound, the key observation is that both price volatility (5) and flow volatility (8) depend

on the volatility of the average demand shift in the market, but with a different coefficient: the

multiplier M for return volatility and 1
ρ − 1 for flow volatility. Taking the ratio of flow volatility in

Equation (8) and return volatility in Equation (5), we have:

M =
σp
σq

×
√

1

ρ
− 1︸ ︷︷ ︸
D

(11)

Equation (11) connects observable market quantities – price and flow volatilities – to the underlying

elasticity and investor agreement. When prices exhibit high volatility relative to trading activity (a

large σp

σq
ratio), two possible explanations emerge: either the price multiplier M is large, amplifying

9We can write Var(uS,t) =
∑I

i=1 S
2
i σ

2
i +

∑I
i=1

∑
j ̸=i SiSjσiσj corr(ui,t, uj,t), under homoskedasticity, σi = σj = σ, so

we have ρ =
∑I

i=1 S
2
i +

∑I
i=1

∑
j ̸=i SiSj corr(ui,t, uj,t). The first term is the Herfindahl–Hirschman Index (HHI) of the

ownership distribution, which vanishes to zero as N is large.
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price responses to demand shifts, or investors strongly agree with each other on demand shifts (ρ →

1), causing observed trading activity (the tip of the iceberg of total demand shifts) to significantly

underrepresent the magnitude of underlying demand shifts.

So far, price impact M is derived under the homogeneous-elasticity assumption. To consider the

case with heterogeneous elasticities, we make an assumption on the distribution of elasticities. Without

getting too attached to a particular data-generating process, we consider the following environment:

Assumption 1. The elasticity ζi for each investor i is drawn independently from the parameters

governing the demand shift process ui,t.

Assumption 1 serves as a neutral benchmark, but it is not necessary for the main result. With

an arbitrary data generating process of elasticities and the demand shifts, one can end up in the

pathological case where the investors that receive larger demand shifts end up selling because they also

react more to the price changes. In Appendix A, we discuss the more precise condition under which

our main theorem holds.

Under Assumption 1, the implied multiplier will be even larger for a given level of investor disagree-

ment D. Intuitively, this is because heterogeneous elasticities induce trading for reasons other than

disagreement on demand shifts. For example, consider the case where investors experience identical

demand shifts. The price adjusts, but as investors respond to the price adjustment differently, they

also want to trade with each other.

Hence, when an econometrician infers the magnitude of aggregate demand shifts from observed flow

volatility under the assumption of homogeneous elasticities, this assumption leads to an overestimation

of the underlying demand shifts. The overestimation occurs because some observed trading activity

stems not from heterogeneous demand shifts but from investors’ heterogeneous responses to price

changes. Since the true aggregate demand shifts are smaller under heterogeneous elasticities, the

actual price impact exceeds that given by (11). Formally, we establish the following theorem:

Theorem 1. Under Assumption 1, the price impact M of demand shifts is lower-bounded by the p/q

volatility ratio σp

σq
, adjusted by investor disagreement D :=

√
1
ρ − 1:

M ≥ σp
σq

×
√

1

ρ
− 1 (12)

Proof. See Appendix A.
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In-sample bounds. Notice that although we express the bound in terms of population parameters,

the identities used in deriving the bound all hold in sample as well. Hence we can express the bound

using sample moments, given as:

M ≥ σ̂p
σ̂q

×
√

1

ρ̂
− 1 (13)

where σ̂p and σ̂q are the sample counterparts of price and flow volatilities, and ρ̂ is the investor

agreement of demand shifts within the sample period.

Moreover, the bound can be applied period by period, under the assumption that ∆qi,t and ∆pt

have mean zero in a given period t (which can be achieved by demeaning across t, assuming that means

are stable):

Mt ≥
|∆pt|√∑I
i=1 Si∆q2i,t

×
√

1

ρt
− 1 (14)

where ρt ≡
(
∑I

i=1 Siui,t)
2∑I

i=1 Siu2
i,t

is the investor agreement in period t.

2.5 Flow Volatility and Portfolio Turnover

The key input to our bound, flow volatility σq, is defined as the size-weighted average of investor-

specific flow volatilities. Seemingly complicated, we show that it is closely related to the total trading

activity from changes in investors’ portfolios, which we term portfolio turnover. For a stock in a given

quarter t, portfolio turnover is defined as the sum of the absolute values of quarter-on-quarter changes

in positions of all investors, normalized by shares outstanding:

Turnovert =
∑

i |∆Qi,t|
Q̄

(15)

where ∆Qi,t = Qi,t−Qi,t−1 is the change in position of investor i from t−1 to t, and Q̄ is total supply.

Portfolio turnover measures the (size-weighted) mean absolute deviation (MAD) of flows:

E
[
Turnovert

]
= E

[∑
i

Si
|∆Qi,t|
SiQ̄

]
=
∑
i

SiE [|∆qi,t|] . (16)

It mirrors the definition of flow volatility, σq ≡
√∑I

i=1 SiE [(∆qi,t)2], but with an L1-norm rather

than an L2-norm. For common distributions, the mean absolute deviation E [|∆qi,t|] is proportional

to the standard deviation σq,i by a constant factor ν determined by the underlying distribution. For
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example, for normally distributed ∆qi,t, ν =
√

π
2 ≈ 1.25. Empirically, Appendix Figure E.1 shows that

portfolio turnover scaled by
√

π
2 and σq are effectively equivalent with a cross-sectional correlation of

around 0.9 and an OLS slope coefficient of 1.1. For this reason, we view the scaled portfolio turnover,√
π
2Turnovert, as an alternative (and more robust) estimator for σq, and use portfolio turnover to refer

to σq at the conceptual level.

Portfolio turnover is closely linked to gross trading volume by construction. However, unlike gross

trading volume, which aggregates all trades within a quarter, portfolio turnover omits offsetting round-

trip trades and measures net quarter-on-quarter changes in portfolio holdings. To see this, consider an

investor that moves from 1000 shares at t to 1100 shares at t+ 1
2 , back to 1000 shares at t+ 1. While

the investor’s gross volume is 200 shares, their portfolio turnover from t to t+ 1 is |∆Qi,t| = 0 shares.

To understand the liquidity provision at the quarterly frequency (here t to t + 1), the intra-quarter

round trips are irrelevant and hence netted out from portfolio turnover. The empirical application

provides more details on the distinction between portfolio turnover and gross trading volume.

2.6 The Bound in the Multi-asset System

Our bound thus far applies to single assets, but real-world portfolio choice involves substitution across

multiple assets. The existing literature emphasizes how ignoring cross-asset substitution biases price

impact estimates: Chaudhary et al. (2023) demonstrates that neglecting heterogeneous substitution

patterns in bond markets leads to biased cross-sectional estimates, while Haddad et al. (2025) show that

identifying aggregate elasticities requires time-series variation even when accounting for heterogeneous

substitution patterns.

Since our bound relies on time-series variation, it avoids the cross-sectional bias identified by

Chaudhary et al. (2023). The bound remains valid—single-asset flow and return volatilities still capture

the fundamental trade-off between price impact and investor agreement. However, both price impact

and investor agreement acquire richer interpretations in multi-asset settings, which we now explore.

The critical insight is that multi-asset demand systems can still be expressed as single-price demand

equations of the form in (2). We illustrate this through a concrete example.

The single-price representation of the two-asset system. Let n and n′ denote two substitutable

assets. For ease of exposition, consider the case with homogeneous elasticities across investors – a

general case with heterogeneous elasticities is discussed in Chaudhary et al. (2024). Define the flow and

price vectors as ∆qi,t ≡ (∆qi,t(n), ∆qi,t(n
′))⊺, ∆pt ≡ (∆pt(n), ∆pt(n

′))⊺, and ui,t ≡ (ui,t(n), ui,t(n
′))⊺.
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The log-linear demand of investor i is

∆qi,t = Γ∆pt + ui,t, Γ =


−ζ(n) ζ(n, n′)

ζ(n′, n) −ζ(n′)

 , (17)

where ζ(n) is the own-price elasticity for asset n, and ζ(n, n′) is the cross-elasticity of demand for asset

n with respect to the price of asset n′.

Using subscript S to denote the size-weighted aggregation, e.g., ∆qS,t(·) ≡
∑

i Si(·)∆qi,t(·), market

clearing gives:

0 = Γ∆pt + uS,t, ⇒ ∆pt = −Γ−1 uS,t, (18)

Inverting the elasticity matrix Γ, the own-price impact of a demand shift to asset n is:

M(n) =
∂∆pt(n)

∂uS,t(n)
=

1

ζ(n) (1−Qn←n′ Qn′←n)
(19)

where Qn←n′ and Qn′←n are defined as

Qn←n′ :=
ζ(n, n′)

ζ(n′)
, Qn′←n :=

ζ(n′, n)

ζ(n)
. (20)

We term these coefficients demand pass-throughs: Qn←n′ measures how a unit demand shift for asset

n′ translates into an effective demand shift for asset n through substitution.10

From the second row of the market-clearing condition (18), we can express the price change of asset

n′ as a function of the price change of asset n and the demand shift to asset n′:

∆pt(n
′) =

ζ(n′, n)

ζ(n′)
∆pt(n) +

1

ζ(n′)
uS,t(n

′). (21)

Substituting (21) into the demand equation for asset n yields the single-price representation:

∆qi,t(n) = − ζ(n) (1−Qn←n′ Qn′←n)︸ ︷︷ ︸
ζ̃(n)= 1/M(n)

∆pt(n) + Qn←n′ uS,t(n
′) + ui,t(n)︸ ︷︷ ︸

ũi,t(n)

, (22)

10Demand pass-throughs relate to cross-elasticities but are expressed in quantity units. While ζ(n, n′) measures how
a price change in n′ affects demand for n, dividing by ζ(n′) converts this to how a demand shift in n′ affects demand
for n. One crucial difference is that cross-elasticities are a pure partial-equilibrium concept, while demand pass-through
depends on how the substitute price responds to the demand shift, and hence is intrinsically a general-equilibrium object.
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Since (22) mirrors the single-asset demand curve (2), Theorem 1 applies directly with identical con-

struction. The differences lie in interpreting the bound’s two key components.

First, while Theorem 1 continues to bound the own-price impact M(n), the price impact no longer

equals the reciprocal of the own-price elasticity ζ(n); instead, it includes the amplification factor

(1−Qn←n′ Qn′←n). The distinction arises because price elasticity ζ(n) measures partial-equilibrium

responses – how demand responds to price changes with substitute prices held fixed. In contrast, price

impact M(n) captures the feedback loop from the general-equilibrium effects: a demand shift for asset

n moves not only its own price but also substitute prices, which recursively feed back into demand for

asset n itself.

Second, investor agreement ρ now encompasses both agreement on asset-specific demand shifts

ui,t(n) and agreement on substitution effects from the aggregate demand shift to substitutes uS,t(n
′).

The latter enters asset n’s demand because it moves substitute prices, effectively acting as a common

demand shift for asset n through cross-asset substitution.

When substitution effects remain moderate (small pass-throughs Q·,·), the interpretive differences

between single-asset and multi-asset settings are minor. However, strong substitution patterns require

careful interpretation of the bound. Appendix C provides detailed analysis and numerical examples

for such cases.

3 Data and Empirical Facts

3.1 Data Sources and Variable Construction

Data. Our empirical analyses are all at the quarterly frequency. We obtain quarterly institution-level

share holdings Qi,t(n) from 1990 to 2024 from the Thomson Institutional Holdings Database (s34 file).

Institutions are denoted by i = 1, ..., I. The subscript t indicates the report date of the 13F filing.

11 Further details can be found in Appendix D.1. Subsequently, we merge quarterly stock holdings

with data on prices and fundamentals from CRSP, Compustat, and IBES. We restrict our sample

to common ordinary shares (share codes 10 and 11) traded on the NYSE, AMEX, and NASDAQ

(exchange codes 1, 2, and 3), that have (on average) at least 10 institutional holders and at least 30%
11In the main text, we use holdings at the institution level (e.g., BlackRock as a single entity rather than as individual

funds) to achieve the most comprehensive coverage. Since holdings are aggregated across funds within the same asset
manager, transactions among funds within the same institution are not observed at this level, which could potentially
lead to an underestimation of portfolio turnover. However, in Appendix D.1, we show that portfolio turnover computed
at the mutual fund level is very close to that at the institution level, suggesting that within-fund-family trades are
negligible.
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observed institutional ownership.12 ∆ denotes quarterly changes. Ownership shares (size-weights) are

denoted by Si,t(n) =
Qi,t(n)

Q̄t(n)
, where Q̄t(n) are the total shares outstanding of the stock. Empirically,

we do not observe the holdings of all investors, but are restricted by reported 13F filings. We therefore

construct the trades of the residual sector that holds the remaining shares outstanding such that the

trades of all investors sum to 0.13

Estimating volatilities. As discussed in Section 2, our bound holds both in sample as well as period

by period. We estimate both σq(n) and σp(n) in the time series for each stock using five-year backward-

looking rolling windows, preventing our results to suffer from forward-looking bias. We estimate σp(n)

using the time-series volatility of quarterly stock returns. As described in Section 2.5, σq(n) can

either be measured directly as
√∑I

i=1 Si,tV̂ar(∆qi,t(n)), the size-weighted average of investor-specific

volatilities (the L2 norm), or approximated using portfolio turnover
√

π
2 Ê [Turnovert(n)] (the L1 norm).

We construct both measures and find similar results. Generally, we favor portfolio turnover for several

reasons. First, it is straightforwardly constructed and closely linked to gross trading volume. Second

and more importantly, L2 norms, such as the standard deviation, are susceptible to outliers – a common

feature in flow data – while L1 norms, such as the mean absolute deviation, are more robust estimators

of statistical dispersion in the presence of fat tails (due to frequent extensive margin trades).

Unlike σq and σp, which are directly observable from trade and price data, investor agreement

ρ is inherently unobserved. To that end, we first present results that are agnostic about the level

of investor agreement. Later in Section 4.2, we present and discuss different strategies of how to

empirically measure ρ.

The top panel of Table 1 reports σp(n) and σq(n) (both measured via L1 and L2 norms). The

average share in our sample has a quarterly return volatility σp(n) of 22%. The average σq constructed

from portfolio turnover is 25%. The 5th percentile, median, and 95th percentile are given by 8%, 23%,

and 50%, respectively. In contrast, the L2 measure of σq is distributed very similarly with a slightly

higher average of 30% and the 5th percentile, median, and 95th percentile given by 10%, 30%, and

53%, respectively. As a consequence, the ratio of return volatility to portfolio turnover (hereafter, p/q

volatility ratio) equals 1.15 for the average share. However, there exists considerable variation in this

ratio as can be seen from the 5th and 95th percentiles, which equal 0.36 and 3.02, respectively.
12All results are robust to alternative cut-offs.
13All results in the paper are robust to omitting the residual sector and constructing Q̄t(n) (and the corresponding

size weights) as the sum of institutional shares held. However, we prefer to construct the residual sector as doing so
effectively accounts for trades by the institutional sector as a whole, which would be omitted otherwise.
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Finally, Table 1 also reports moments of the distributions of institutional ownership and trading

volume. For example, the average share is held by about 200 institutions with an average institutional

ownership share of 60%. Notably, all our main results are robust to restricting the sample to stocks

for which institutional ownership is higher than 90%.

Table 1: Summary Statistics
The table summarizes the distribution of the key variable inputs for deriving the price impact bounds over the cross-
section of US equities. The first rows report the volatility of returns σp and the volatility of flows σq, both explicitly
computed via size-weighted investor-specific volatilities, and the L1 approximation from scaled portfolio turnover. The
volatilities are computed over 5-year rolling windows. The middle panel reports the number of investors holding each
stock, the distribution of institutional ownership and the investor concentration defined as

∑
i S

2
i,t(n). The last rows

report gross quarterly trading volume (from CRSP) alongside portfolio turnover divided by 2. The division by 2 avoids
double-counting trades and ensures comparability to gross trading volume.

Mean Std 5th pctl. Median 95 pctl.

Volatilities of Trade and Returns
Return Volatility σp 0.22 0.15 0.09 0.19 0.47
Flow Volatility σq (L2) 0.30 0.13 0.10 0.30 0.53
Portfolio Turnover σq (L1) 0.25 0.13 0.08 0.23 0.50
p/q Volatility Ratio σp/σq 1.16 1.32 0.36 0.81 3.02

Ownership Distribution
Number of Institutional Holders 202.94 276.54 14.00 124.00 663.00
Institutional Ownership 0.60 0.25 0.16 0.62 0.99
Ownership Concentration (HHI) 0.23 0.21 0.04 0.16 0.67

Trading Volume
CRSP Total Volume 0.46 0.55 0.06 0.31 1.35
1
2

Net Volume 0.10 0.09 0.02 0.08 0.24

3.2 Portfolio Turnover versus Gross Trading Volume

A well-known feature of equity markets is the high volume of trading. In fact, in the past 30 years, the

quarterly trading volume (relative to shares outstanding) for the median stock on the NYSE, AMEX,

and NASDAQ, has been around 50-100%. Instead, portfolio turnover constructed from changes in

institutional investors’ portfolios is considerably lower. For example, as of 2024, the quarterly portfolio

turnover amounts to 8% of shares outstanding for the average stock.

Institutional ownership in the average stock in our sample is 60%. We first confirm that the

large gap between gross trading volume and (institutional) portfolio turnover is not simply driven by

offsetting trades within the unobserved residual investor. Panel a) of Figure 1 shows the ratio of gross

trading volume to portfolio turnover across stocks with varying levels of institutional ownership. The
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ratio remains essentially unchanged across ownership groups, indicating that the gap between gross

volume and turnover is not explained by unobserved portfolio adjustments. Even in the top decile –

where average institutional ownership reaches 99.7% – gross quarterly trading volume is still about

seven times larger than portfolio turnover.

Studies using household data further confirm that households have even smaller portfolio turnover

compared to institutional investors. Using portfolio holdings data from households, Gabaix et al.

(2025) measure the risk transfer – defined as the percent change in market risk exposure for a group of

investors over a given period, a measure closely related to portfolio turnover at the aggregate market

level. They find that the quarterly risk transfer is only 0.65% for household groups, far smaller than

the 6% portfolio turnover observed for institutional investors at the aggregate market level (as reported

in Figure 7 below).

We also verify that the low portfolio turnover is not driven by aggregation across mutual funds

within a management company. In Appendix D.1, we disaggregate 13F managers into their constituent

mutual funds and ETFs and show that portfolio turnover computed at the fund level is only marginally

larger than at the institutional level, suggesting that within-fund-family trading is negligible.

Given the large differences between gross trading volume and portfolio turnover, one may wonder

whether these measures are fundamentally economically different. Panel b) of Figure 1 suggests they

are not. Despite a difference in levels up to a factor of seven, gross trading volume and portfolio

turnover are highly correlated in the cross-section. The cross-sectional correlation in ranks is about

80% in recent periods.14 This high correlation suggests that portfolio turnover and gross trading volume

are at least to some extent driven by the same fundamental economic primitives. The key difference

is that gross trading volume is substantially inflated by round-trip trades that do not contribute to

long-term liquidity provision.
14Mechanically, portfolio turnover is part of gross trading volume by construction. However, this cannot explain the

high correlation due to the large discrepancy in the level.
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Figure 1: Portfolio Turnover versus Gross Trading Volume
Panel a) of the figure plots the ratio of quarterly trading volume (CRSP) relative to portfolio turnover for groups of
stocks sorted by institutional ownership. Average institutional ownerships for each decile are reported in brackets. Panel
b) plots the quarterly (rank) correlation of trading volume and portfolio turnover in the cross-section of stocks. We
report annual averages of quarterly correlations.
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If institutional investors were the only investors trading the underlying securities, then any differ-

ence between gross trading volume and portfolio turnover is due to offsetting round-trip trades within

a quarter. For example, a high-frequency market maker may hold a small inventory from beginning

to end of quarter, but account for a large share of total trading volume in a given stock. Importantly,

such high-frequency round-trip trades cannot accommodate persistent demand shifts in the long-term.

According to our theory, what matters for the long-term impact of persistent demand shifts is port-

folio turnover, not gross trading volume. Dissecting the difference between gross trading volume and

institutional turnover and analyzing the effects of high-frequency intermediation for long-term asset

pricing is beyond the scope of this paper but an exciting avenue for future research.15

4 The Price Impact Bound

4.1 The Price Impact Bound under Varying Levels of Investor Agreement

As discussed above, in a first step, we evaluate the price impact bounds without taking a stance on

the level of investor agreement ρ. In particular, we document the bounds M(ρ) as a function of ρ for

U.S. equities. That is, using stock-level return volatility, σp, and portfolio turnover, σq, constructed as

described in the previous section, we compute the bound M(ρ) for each stock while allowing ρ to vary
15In follow-up work, we link the long-term asset pricing implications of portfolio turnover and the short-term mi-

crostructural implications of high-frequency trading volume. We show that the market participants that have entered
since 1980 – such as high-frequency market makers, ETF authorized participants, algorithmic trading firms, and (mobile)
retail traders – have contributed to the surge in trading volumes and a decline of short-term price impact, but did not
help absorbing long-term demand shifts.
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between 0 and 1. Panel a) of Figure 2 plots the distribution of the lower bounds of price impact for

individual U.S. stocks. In contrast, Panel b) plots the distribution of the upper bounds on aggregate

elasticity, i.e., the inverse of the price impact bounds.

Figure 2: Price Impact Bounds under Varying Agreement ρ
The figure plots the price impact bound for a given level of investor agreement ρ. Panel a) plots the lower bound on the
price impact M(ρ) as a function of ρ, for the average US stock, as well as the top and bottom 10% of stocks with the
highest and lowest p/q volatility ratio σp

σq
. The lower bound on price impact bound can be inverted to obtain an upper

bound on the aggregate (size-weighted) elasticity. Panel b) plots the upper bound on the aggregate elasticity ζS(ρ) for
US stocks.
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(b) Elasticity Bound ζS(ρ)
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Figure 2 shows that a high p/q volatility ratio is consistent with perfectly elastic markets that

feature a close-to-zero price impact. However, such coexistence requires a high degree of agreement

among investors, implying that their demand shifts are almost perfectly correlated. Note that the

average level of the p/q volatility ratio σp

σq
is about 1. That is, for a 1% demand shift to move prices

less than 0.1% (M < 0.1), investor agreement must exceed 99%. In other words, the empirical level of

the p/q volatility ratio can only be reconciled with elastic markets if investors are homogeneous to an

unrealistic degree. Put differently, under reasonable levels of investor disagreement, price impact will

exceed 0.1%. Generally, the bounds are more stringent as investor agreement decreases (ρ → 0).

4.2 Measuring Investor Agreement

Without an explicit measure of investor agreement, ρ, the lower bound of price impact cannot be

determined. However, as can be seen from Figure 2 the bound is relatively flat when ρ lies between 0.2

and 0.8. In this region, the bound varies predominantly due to variation in the p/q volatility ratio – at

least in our canonical application to the cross-section of U.S. stocks. Panel a) of Appendix Figure E.2

reinforces this conclusion more formally by plotting the partial derivative of the bound with respect to
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ρ. The derivative is small in absolute terms in a large surrounding neighborhood of ρ = 0.5 but grows

significantly for extreme degrees of agreement/disagreement, i.e., as ρ approaches 1 or 0. The fact

that the partial derivative, d, is mostly small implies that a very precise estimate of ρ is required to

differentiate between models with M = 1 versus models with M = 0.5. On the other hand, rejecting

the null hypothesis that M < 0.1, as implied by most canonical frictionless models, merely requires

showing that ρ < 0.99. Arguably, this is a much lower hurdle to cross given the extensive literature

on heterogeneity in preferences and beliefs among investors. Therefore, rather than trying to provide

a precise estimate of ρ, our objective is to establish that ρ is unlikely to be close to either 0 or 1. In

this case, the part of Equation (11) which relates to investor heterogeneity, D =
√

1
ρ − 1, is relatively

close to 1 and, thus, the simple p/q volatility ratio is a close proxy for the actual price impact bound.

Unfortunately, common portfolio-based measures of disagreement, such as short interest and active

share, cannot directly inform us about investor agreement, as these measures are endogenous to prices

and thus already contain information about elasticities – the very quantity we seek to measure. For this

reason, we estimate ρ directly from survey data. To that end, we estimate investor agreement via equity

analyst agreement. This approach is almost model-free, as it does not require imposing any specific

covariance structure on the underlying demand shifts. However, it does require that the estimated ρ

for analysts is “portable” and, thus, reflects well the ρ of investors. Importantly, we do not assume

that investors and analysts are the same agents – only that the cross-sectional dispersion in analyst

forecasts is a reasonable proxy for the heterogeneity in investors’ demand shifts. Notably, because

analysts tend to operate within a relatively homogeneous professional environment, and because belief

disagreement captures only one aspect of broader investor heterogeneity, the limited dispersion in

analyst expectations likely overstates the degree of correlation in demand shifts among the full set of

investors.

Since analysts submit forecasts across different horizons – from one-quarter ahead to long-term

growth rates – and investors care about the total discounted cash flows when trading stocks, we estimate

analyst agreement at different horizons. To be consistent with our theoretical framework, we focus on

agreement in quarterly forecast updates from Institutional Broker Estimates System (I/B/E/S) stock

analysts. Specifically, let ∆fh
i,t(n) denote the update made by analyst i in period t to the earnings per

share (EPS) forecast of firm n for horizon h. We then estimate analyst agreement ρhEPS(n) for each

stock n and forecast horizon h as the adjusted R2 from regressing ∆fh
i,t(n) on time fixed effects:16

16We first demean forecast updates across time within each analyst, ensuring that the total variation in the regression
excludes heterogeneity in average forecast updates. See Appendix D.3 for more details.
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∆fh
i,t(n) = γt + ϵhi,t(n) for each n and h, (23)

where γt denotes time fixed effects. We estimate Equation (23) for horizons ranging from one-

quarter ahead to three-quarters ahead, as well as long-term growth rates (LTG). The details of the

sample construction and estimation procedures can be found in Appendix D.3.

Table 2: Summary Statistics of ρ Estimated from Earnings Forecast Updates
The table reports the distribution of investor agreement ρ estimated from analyst forecast updates using Equation (23).
For each stock and forecast horizon, ρ is computed as the adjusted R2 from regressing analyst forecast updates on time
fixed effects. 1Q, 2Q, and 3Q refer to one-quarter ahead, two-quarter ahead, and three-quarter ahead earnings per share
(EPS) forecasts, respectively. LTG refers to long-term growth forecasts.

Horizon # Firms Mean 5th Pctl Median 95th Pctl

1Q 754 0.53 0.16 0.56 0.80

2Q 669 0.47 0.11 0.48 0.76

3Q 585 0.41 0.07 0.4 0.75

LTG 366 0.29 0.0 0.26 0.72

Table 2 reports the cross-sectional distribution of ρh(n) for different forecast horizons. Intriguingly,

analyst agreement exhibits a clear term structure across forecast horizons: as the horizon increases,

analysts increasingly disagree with each other. This pattern is intuitive – forecast uncertainty grows

with the forecasting horizon, and fewer reliable common signals are available for analysts to anchor

their expectations. Since a stock’s value reflects discounted cash flows across all horizons, investors’ de-

mand shifts incorporate innovations to expected cash flows possibly across all horizons. Consequently,

estimates derived from forecasts for one quarter and long-term growth can be interpreted as lower and

upper bounds of investor agreement originating from cash flow expectations.

For stocks in the United States, the average update in one-quarter ahead earnings per share fore-

casts across analysts explains approximately 53% of the total variation in EPS updates. At this level of

investor agreement (ρ = 53%), we obtain an average stock-level price impact of 0.75. In contrast, the

average update in long-term growth forecasts explains only 29% of the total variation in LTG updates,

implying a price impact of 1.0. Across all measures of investor agreement, we rarely observe values of

ρ exceeding 80%, suggesting that for the vast majority of stocks, price impact exceeds 0.5 and price

elasticity is below 2.

Event-Study Implied Agreement. Alternatively, we can compare our estimates of investor agree-

ment from the I/B/E/S data against the investor agreement implied by event-study estimates of price
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impact. To that end, we take the empirical estimates of M at face value and use Equation (11) to

impute ρ. Panel a) of Figure 3 reports average ρ based on survey data along with the stock-level price

impact bound as a function of ρ for the average stock. We plot the average ρ obtained from 1, 2,

and 3-quarter ahead EPS forecast updates, as well as LTG updates. Panel b) documents the implied

ρ based on price impact estimates from the literature. For the range of price impacts found in event

studies (such as stock index inclusions, mutual fund flow-induced trades, and dividend reinvestments)

our bound implies that investor agreement ρ should roughly lie between 0.1 and 0.75. Notably, all

our estimates from the I/B/E/S data are well within this range. Last, in Appendix D.4 we examine

the investor agreement implied by a structural asset pricing model designed to match both prices and

investor-level holdings data. To this end, we use the model by Koijen and Yogo (2019) and estimate

the stock-level agreement implied by the demand curves within their framework. We again confirm

that ρ(n) is not pathologically high. The average ρ implied by logit demand lies between 0.22 and

0.37.17

Figure 3: Investor Disagreement: IBES versus Event Studies
Panel a) plots the average ρ from survey data along with the stock-level price impact bound as a function of ρ for the
average stock. We plot the average ρ obtained from 1, 2, and 3-quarter ahead EPS forecast updates, as well as LTG
updates. Panel b) plots the investor agreement implied from the range of price impacts found in event studies. The
dotted lines indicate the implied investor agreement by the event-study range.
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(b) Implied ρ by Event-Study Literature
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4.3 The Price Impact Bound

Next, we apply our estimates of investor agreement to obtain a lower bound on the price impact for

each individual stock as follows:
17The ρ obtained from logit demand can only inform our bounds to a limited extent, as it requires assuming that logit

elasticities from portfolio holdings in levels capture quarterly flow elasticities, which may be violated if investors are inert
van der Beck (2022).
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MEPS(n) ≡
σp(n)

σq(n)

√
1

ρEPS(n)
− 1 (24)

All of the following results are robust to using any of the four forecast-horizon specific estimates

of ρ derived from the I/B/E/S data in our calculations of the lower bound. However, to maximize the

cross-sectional sample size, we rely on ρ estimated based on one-quarter ahead EPS forecasts in our

baseline results.

As discussed earlier, the EPS-based price impact bound is imperfect, as it ignores investor dis-

agreement along many other dimensions. Moreover, for values of ρ in the neighborhood of 0.5, the

term (
√

1
ρ − 1) is close to 1 in magnitude and relatively insensitive to changes in ρ. Therefore, we

also consider a simplified bound M̃(n) defined as the p/q volatility ratio, implicitly assuming that

ρ(n) = 0.5 for all stocks n. Formally,

M̃(n) ≡ σp(n)

σq(n)
. (25)

Henceforth, we refer to M̃(n) as the p/q volatility ratio, or simply as the “volatility ratio” when a

shorter expression is more convenient. In all our empirical tests, we report results for both MEPS(n)

and M̃(n). Interestingly, MEPS(n) contains important incremental information compared to M̃(n)

when explaining price reactions, despite ρ being measured with noise. Importantly, many other liquidity

measures that depend on prices and trading volume, such as Amihud (2002) (and the large body of

work that builds on it), are in theory similarly affected by investor agreement, ρ. However, this does

not directly become evident as many empirical measures of liquidity do not have a micro-founded

equilibrium interpretation.

Panel a) of Figure 4 plots the distribution of the price impact bound MEPS(n). For the average

stock, the lower bound on the price impact is around 1. The top 5% of stocks have bounds exceeding

3.18 Overall, there is considerable heterogeneity in the bound across stocks which we will explore in

the next section. Importantly, the magnitudes of our bounds are consistent with empirical reduced-

form evidence from index inclusions (e.g., Shleifer (1986)), mutual fund flow-induced trades (e.g., Lou

(2012)), benchmarking intensity (e.g., Pavlova and Sikorskaya (2022)), and dividend reinvestments

(e.g., Schmickler (2020)). Our bounds highlight that low demand elasticities are not an artifact of

unique event studies but are instead a pervasive fact that can be directly inferred from the high p/q

volatility ratio and the amount of investor disagreement in the market.

Finally, Panel b) of Figure 4 graphically illustrates the very high cross-sectional correlation between
18The distribution of the simple p/q volatility ratio, M̃(n), is very similar in shape and magnitudes.
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M̃(n) and MEPS(n) of 84%. Relatedly, Panel b) Appendix Figure E.2 decomposes the cross-sectional

variation in MEPS(n) and shows that ρ plays a minor role relative to σq and σp. Put differently, the

cross-sectional variation of ρEPS(n) is not large enough to dominate the cross-sectional variation in
σp(n)
σq(n)

.19

Figure 4: Implied Price Impact for US Equities
The figure plots the distribution of price impact for the cross-section of US stocks. Panel a) plots the distribution of
MEPS(n) ≡ σp(n)

σq(n)

√
1

ρEPS(n)
− 1. We use our baseline measure of investor agreement ρ extracted from EPS forecast

updates ρEPS. Panel b) plots the correlation between MEPS and the simple p/q volatility ratio M̃ =
σp

σq
.
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5 Empirical Relevance of the Stock-Level Bounds

Our stock-level bounds are ultimately theoretical constructs that provide lower limits on the expected

price impact of investor-specific demand shifts. That is, the bounds are particularly valuable in settings

where empirical estimates are unavailable or difficult to obtain. For instance, identifying a source of

plausibly exogenous demand shifts to credibly estimate the price impact for broad portfolios, such as

the total U.S. equity market, is challenging. Similarly, estimating asset-level price impact is challenging

because much of the carefully identified event-study evidence relies on cross-sectional variation and,

thus, obtains pooled estimates across assets. However, to trust our model-implied bounds in such a

context, it is crucial to verify that the bounds align well with the empirical evidence from settings with

credible identification strategies. To that end, we focus on two of the most widely used and verified

event studies in empirical asset pricing. Mutual fund flow-induced trades and index inclusions. In

particular, we test whether these (plausibly) exogenous demand shifts imply larger price changes for
19As discussed in Section 4.2, more formally, the reason for the minor role of investor agreement is that the derivative

∂M
∂ρ

= − 1
2
M̃ 1

ρ2

√
1/ρ− 1 is small as long as ρ does not take extreme values, i.e. 0 or 1.
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stocks with a higher price impact bound, M.

5.1 Flow-induced trades

Following Coval and Stafford (2007), Lou (2012), and Edmans et al. (2012), flow-induced trades by

mutual funds (FIT) have been a widely used source of (plausibly) exogenous variation in demand. We

follow the construction of flow-induced trades by Lou (2012) and relegate details to the Appendix D.5.

To test whether stocks with higher price impact bounds have higher FIT returns, we interact FIT

with MEPS. We then run panel regressions of quarterly stock returns onto FIT, the interaction of

FIT with our bounds, and time fixed effects. As expected, the impact of flow-induced trades is signifi-

cantly larger for stocks with higher price impact bounds as evidenced by the positive and statistically

significant coefficient on the interaction term. Moreover, we sort the stocks into quintiles based on

MEPS and estimate the flow-induced price impact for each quintile by interacting FIT with quintile

dummies. Panel a) of Figure 5 plots the results graphically and Appendix Table E.1 reports the results

numerically. In line with our theoretical predictions, price impact estimates increase monotonically

from the lowest to the highest price impact bound quintile. For example, the flow-driven price impact

for the top quintile of stocks is about twice as large as in the bottom quintile.

5.2 Index Inclusions

Following Shleifer (1986) and Harris and Gurel (1986), an extensive body of literature investigates

the average (abnormal) return around index inclusions and exclusions.20 Index reconstitutions imply

large uninformed demand shifts for affected securities, stemming from passive index trackers who me-

chanically buy the included and delete the excluded stocks from their portfolios. Relying on the data

provided by Greenwood and Sammon (2025) on abnormal event returns and S&P 500 reconstitutions,

we find an average abnormal event return of 8%. However, there is considerable variation in event

returns with the cross-sectional standard deviation being equal to 12%. Similar to Section 5.1, we

examine whether stocks with higher MEPS experience significantly higher abnormal event returns. We

find that our price impact bounds are highly statistically significantly related to abnormal event re-

turns. In other words, stocks with high bounds have significantly higher (lower) returns when included

in (excluded from) the S&P 500. As for flow-induced trades, we sort the included and excluded stocks

into quintiles by their price impact bound and regress event returns onto the quintiles. Greenwood and
20Among others, Petajisto (2011), Madhavan (2003), Chang et al. (2015), Pavlova and Sikorskaya (2022)
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Sammon (2025) find that index returns from announcement to effective reconstitution have declined

over time, likely because investors increasingly front-run inclusions ahead of the announcement, spread-

ing the effect over a longer window. We therefore focus on the pre-2000 period, when the average index

effect was strongest. We also report the results for the whole sample period, which are quantitatively

and qualitatively unchanged, but statistically weaker. Panel b) of Figure 5 plots the results graphically

and Appendix Table E.2 reports the results numerically. As before, abnormal returns are increasing

when moving from the lowest to the highest price impact bound quintile. For example, the abnormal

inclusion return for the top quintile of stocks is about 2.5 times as large as that of the bottom quintile.

Figure 5: Validation: S&P 500 Inclusions and Flow-Induced Trades
The figure summarizes the empirical validation of our bounds. Panel a) plots the coefficient of regressing quarterly
stock-returns onto flow-induced trades (FIT) interacted with quintile dummies of our price impact bound. Panel b) plots
the coefficient of regressing (signed) abnormal event returns during S&P 500 index reconstitutions onto quintile dummies
of our price impact bound. We report 95% confidence intervals using standard errors clustered by date.
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Lastly, we confirm that the ability of our bounds to price persistent demand shifts is not subsumed

by standard high-frequency liquidity measures, which rely on gross trading volume rather than portfolio

turnover. In particular, we use two alternative measures: the ratio of return volatility to gross-volume
σp

CRSP Vol. (as opposed to using portfolio turnover σq in the denominator); and the Amihud (2002)

illiquidity measure. Appendix Tables E.3 and E.4 repeat the FIT and S&P500 inclusion regressions

for these alternative measures. Importantly, the measures based on gross trading volume do not

explain the abnormal returns due to demand shocks. In fact, relying on gross trading volume rather

than portfolio turnover renders the interaction term between FIT and the price impact measure M

insignificant. This suggests that – beyond simply inflating portfolio turnover due to round-trip trades

– gross trading volume is less suited to measure long-term liquidity provision.
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6 Exploring the Bounds Beyond Event Studies

The previous section documented that our bounds are empirically relevant when measuring long-term

price impact of investor-specific demand shifts. Based on this evidence, we next explore the cross-

sectional variation of our measures in different settings. To do this, we rely on our simplified measure,

M̃, whenever there is no suitable measure of investor agreement ρ available, for example, due to limited

time-series variation or lack of estimates of ρ for aggregated portfolios.

6.1 Price Impact Bound at Different Horizons

A natural feature of financial markets is a decreasing price impact at longer horizons. This pattern

is consistent with long-term investors being more willing to bear long-term risks, accepting lower

compensation for absorbing risks from higher-frequency traders who initially take the other side of a

demand shift (Duffie, 2010). Decreasing price impact, therefore, implies that each layer of intermedi-

ation is compensated for providing liquidity. Instead, increasing price impact over time would imply

that liquidity providers lose money on average as mispricing amplifies. Our bounds allow testing the

extent to which price impacts decrease at lower frequencies and how the relationship between high-

and low-frequency impact has evolved over time.

To this end, we construct portfolio turnover and return volatility at different horizons, denoted by

σq,H and σp,H , where H = D,Q, Y corresponds to daily, quarterly, and yearly measures, respectively.

Return volatility at these frequencies is straightforward to compute. Portfolio turnover at lower fre-

quencies (e.g., annual) is also easily constructed by measuring changes in portfolio holdings relative

to shares outstanding and summing their absolute values. Estimating portfolio turnover at higher

frequencies requires additional assumptions, as comprehensive investor-level holdings data are only

available at the quarterly level. However, at an infinitely high frequency, portfolio turnover coincides

with gross trading volume. As the frequency decreases, this equivalence breaks down: round-trip trades

accumulate, and the gap between portfolio turnover and gross trading volume widens monotonically.

To construct the volatility ratio at high (daily) frequency, we make a simplifying assumption and use

daily gross trading volume as a proxy for daily portfolio turnover σq,D. This effectively abstracts from

intra-day round-trip trades, which likely occur because of the role of market makers and high-frequency

participants. As a result, daily gross trading volume strictly overstates daily portfolio turnover, imply-

ing that the resulting volatility ratio σp,D/σq,D should be interpreted as a conservative (lower-bound)

estimate, given that the true σq,D is plausibly lower.

30



We construct the volatility ratio M̃H(n) =
σp,H(n)
σq,H(n) for every stock at the daily, quarterly, and

annual level. Figure 6 plots the cross-sectional average for each horizon over time.

Figure 6: Price Impact at Different Horizons
The figure plots the stock-level p/q volatility ratio M̃ for the average stock from 1990 to 2024. M̃ uses portfolio turnover
and return volatility at the daily, quarterly, and annual frequency. We plot ten-year rolling averages of the volatility
ratios for visual clarity. The underlying (unaveraged) time series are reported in Figure E.3 in the Appendix.
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First, price impact (as proxied by the p/q volatility ratio) decreases monotonically at longer hori-

zons. In 2000, the average daily price impact was over twice as large as the quarterly impact, which

in turn was 50% larger than the annual impact.21 Second, while daily price impact has decreased

considerably over our sample period, quarterly and annual price impacts have remained largely flat.

This pattern suggests that while markets have become more effective at absorbing demand shocks in

the short run, their ability to accommodate long-term shifts has remained largely unchanged. Our

focus in this paper lies on the asset pricing implications of persistent, long-horizon quantities, rather

than the micro-structural effects of high-frequency trades. Investigating how price impact at different

frequencies is connected lies beyond the scope of this paper, but represents an important direction for

future research. In particular, it would be interesting to examine whether the rise of high-frequency

trading and the resulting improvement in daily liquidity have positive spillover effects on the long-term

elasticity faced by investors, for example by lowering their effective trading costs.

We emphasize that inelastic markets and long-term price impact, while economically meaningful,

do not imply that price impact increases at longer horizons (which would entail systematic losses for
21Note that, because daily price impact is computed using gross volume (rather than portfolio turnover), it represents

a lower bound on the true daily volatility ratio.
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liquidity providers). Instead, we find that price impact declines monotonically with horizon. This

perspective also mitigates concerns that long-term impact is overstated: in fact, the high-frequency

estimates reported in Brokmann et al. (2015); Frazzini et al. (2018); Bouchaud et al. (2018) are sub-

stantially larger than the bounds we obtain at quarterly and annual frequencies.

6.2 Differences in Price Impact in the Cross-Section of Stocks

In the following, we ask the question: Which stocks have higher price impact bounds? To this end, we

regress MEPS and M̃ on various stock-specific characteristics such as size (market equity), systematic

risk (market beta), momentum (cumulative past returns), book-to-market ratio, dividend to book

equity ratio, profitability, and the illiquidity measure from Amihud (2002). Table 3 reports the results.

Table 3: Heterogeneity in M
The table summarizes how M varies across different stocks. We regress M and the simplified σp

σq
on the stock-specific

characteristics, log market equity, market beta, momentum, dividend to book equity, profitability, and amihud illiquidity.

MEPS M̃

(1) (2) (3) (4)

log(ME) -0.396***
(0.017)

-0.383***
(0.017)

-0.675***
(0.033)

-0.593***
(0.029)

β 0.121***
(0.010)

0.159***
(0.011)

0.148***
(0.013)

0.134***
(0.012)

Cum. Ret. 0.160***
(0.013)

0.151***
(0.009)

0.138***
(0.007)

0.125***
(0.006)

BM -0.112***
(0.013)

-0.111***
(0.012)

-0.127***
(0.012)

-0.111***
(0.011)

Dividend
BE 0.015

(0.009)
0.023*
(0.009)

-0.028*
(0.011)

-0.026*
(0.010)

Profit -0.085***
(0.011)

-0.088***
(0.010)

-0.001
(0.011)

0.001
(0.010)

Amihud Illiquidity 0.261***
(0.017)

0.265***
(0.017)

0.182***
(0.014)

0.167***
(0.013)

Date - x x x
Stock - - x x

Observations 287895 287895 287895 287895
R2 0.255 0.283 0.586 0.590
R2 Within - 0.250 0.147 0.148

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p
< 0.001. Format of coefficient cell: Coefficient (Std.
Error)

First, we find that M is significantly smaller for larger stocks. That is, a one standard deviation

increase in stock size is associated with a 0.13 decline in price impact (t-statistic of 12). This aligns

with the view that larger stocks are more liquid, possibly due to more precise and readily available

information. Notably, however, this finding contrasts Haddad et al. (2021) and Jiang et al. (2025),

who document that large stocks are less elastic than small stocks.
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Second, stocks with higher market betas exhibit significantly larger price impacts, i.e., a one stan-

dard deviation increase in market beta raises the price impact by 0.1. This is consistent with standard

CARA-normal intuition: stocks that contribute more to the risk of an arbitrage portfolio are more

sensitive to demand shifts (Greenwood (2005), Kozak et al. (2018)).

Third, stocks with stronger past cumulative returns (i.e., momentum stocks) have significantly

larger price impacts. This finding aligns with the idea that momentum traders – with upward-sloping

demand curves – continue to trade in the direction of the initial price movement, thereby reducing

market liquidity and further amplifying price shifts.

Fourth, stocks with higher Amihud (2002) illiquidity have a higher M. Perhaps, this is not sur-

prising as our bounds could be interpreted as low-frequency counterpart to the original Amihud (2002)

illiquidity measure. Importantly, however, Amihud (2002) illiquidity does not explain an economically

meaningful fraction of our price impact relative to other characteristics. That is, a one standard de-

viation increase in illiquidity is associated only with an economically relatively small increase in price

impact of 0.04. As argued in Section 3.2, gross trading volume (as opposed to portfolio turnover) is

not well-suited to assess the price impact of long-term demand shifts.

Importantly, all documented patterns are robust – in fact become stronger – when we additionally

control for stock fixed effects. Finally, our results also remain unchanged when we use our simplified

bounds, M̃ =
σp

σq
, as an independent variable. This further corroborates the fact that our results

appear not to be driven by the investor agreement parameter which is notoriously difficult to quantify.

6.3 Price Impact at Higher Levels of Aggregation

Our bounds are particularly helpful for investigating settings for which there is a lack of relevant and

exogenous demand shifts, such as the aggregate stock market. Gabaix and Koijen (2021) find that

the aggregate stock market is considerably more inelastic than individual stocks. Li and Lin (2022)

find that price multipliers in the cross-section of individual stocks monotonically increase at higher

levels of aggregation. Our simplified bounds are informative about the price impact at different levels

of aggregation as they rely only on two simple empirical moments: return volatility and portfolio

turnover.

Specifically, we compute M̃ using various aggregation levels. That is, we start from individual

stocks and then successively aggregate to 49 Fama-French industry portfolios, 12 Fama-French industry

portfolios, the six portfolios double-sorted on size and book-to-market, three portfolios sorted on size,
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and, finally, one overall market portfolio. To avoid confusion with “portfolio turnover” – which refers

specifically to trading activity from institutional holdings – we henceforth refer to these aggregation

levels as groups, rather than portfolios. We first compute return volatility σp(g) and portfolio turnover

σq(g) at these different levels of aggregation. Let g ⊆ N denote the subset of stocks belonging to a

given group. Return volatility for group g is then simply the rolling 5-year standard deviation of the

value-weighted portfolio return. For example, for the aggregate stock market, σp(g) is the standard

deviation of the value-weighted return across all stocks. Portfolio turnover for group g is given by

Turnovert(g) =
∑

i=1∆|Qi,t(g)|
Qt−1(g)

, (26)

where Qi,t(g) =
∑

n∈g ∆Qi,t(n)Pt−1(n) and Qt−1(g) =
∑I

i=1

∑
n∈g Qi,t−1(n)Pt−1(n). The numerator

measures the total dollar flow in and out of group g between t−1 and t. The denominator measures the

total dollar value of group g as of t− 1. For example, for the aggregate stock market, the denominator

is given by the total stock market capitalization. As before, we then approximate σq as the scaled

average of portfolio turnover, σq(g) ≈
√

π/2

T E[Turnovert(g)], estimated from 5-year rolling windows.

Figure 7: Bounds at different Levels of Aggregation
Panel a) plots the volatility of returns σp(g) and portfolio turnover σq(g) at different levels of aggregation g ranging
from individual stocks to the aggregate stock market. Panel b) plots the bound-implied price impact for different levels
of aggregation ranging from individual stocks, industries, characteristic portfolios and the aggregate stock market. For
each level of aggregation, we plot σp

σq
, which is the price impact implied by ρ = 0.5.
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Panel a) of Figure 7 plots our estimates of σq(g) and σp(g) at seven different levels of aggregation.

At the individual stock level, portfolio turnover σq is largest. However, as we aggregate stocks into

fewer and fewer buckets, σq systematically declines. This pattern is intuitive: Investors’ trades in

a given stock within an aggregation level partly offset each other, which reduces portfolio turnover.

At the same time, return volatility also declines with aggregation. As before, this is intuitive and
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expected from basic portfolio theory, where diversification reduces idiosyncratic risk. Importantly,

however, what matters most for our price impact bounds is the relative speed at which the volatility of

returns and portfolio turnover decline – ultimately, an empirical question. In the data, return volatility

decreases at a lower pace. As a result, M̃ rises with aggregation. Panel b of Figure 7 shows that the

average M̃ increases monotonically with the level of aggregation—from 1.4 for individual stocks, to

1.7 for industry portfolios, and up to 2.0 for the aggregate market.

6.4 Price Impact and the Cross-Section of Risk Premia

Although not the main focus of our paper, we also examine whether long-term price impact – as

captured by our bounds – predicts expected returns, perhaps because long-term illiquidity constitutes

a priced risk. To this end, we conduct simple portfolio sorts. We sort stocks at the beginning of

month t into quintiles based on the last available quarterly measure of price impact.22 Table 4 shows

the time series averages of monthly equal-weighted portfolio returns. We report both raw returns and

four-factor adjusted returns calculated using the three Fama-French factors (MKT, SMB, and HML)

and the momentum factor (UMD). In addition, we also report return spreads between the top and

bottom quintiles along with their t-statistics. Both the raw and the four-factor adjusted returns exhibit

highly statistically and economically significant return spreads ranging between 0.38% and 0.67% per

month across price impact bound measures. Appendix Table E.5 confirms these results in monthly

Fama-MacBeth Regressions.
22In particular, we transform our quarterly data set to a monthly data set by forward filling the quarterly price impact

measures by three months. For example, the relevant measure for the months March 2022, April 2022, May 2022, June
2022, and July 2022 are based on data from the months December 2021, March 2022, March 2022, March 2022, and
June 2022, respectively.
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Table 4: Portfolio Sorts
This table reports monthly returns (in percentage) of portfolios sorted on various price impact bound measures. At the
beginning of each month t, stocks are sorted into quintile portfolios according to our measures of month t− 1. We then
calculate monthly equal-weighted portfolio returns for the quintile portfolios and report time-series average portfolio raw
returns or four-factor-adjusted returns (MKT, SMB, HML, and UMD), where the factor loadings are estimated in the
preceding 60 months. The differences between the top and bottom quintiles are also reported with associated t-statistics.
The t-statistics are calculated using Newey-West robust standard errors with six lags.

Sorting
Variable Returns Low 2 3 4 High H–L t-stat

M̃ Raw Return 1.065 1.099 1.079 1.152 1.688 0.623*** 3.746
Four-Factor-adjusted 0.043 0.058 -0.061 0.077 0.482 0.440*** 3.889

MLTG Raw Return 0.987 1.034 1.033 1.137 1.646 0.659*** 3.756
Four-Factor-adjusted 0.032 0.066 -0.079 0.090 0.419 0.387*** 3.190

M1Q-EPS Raw Return 1.003 1.001 1.027 1.146 1.660 0.657*** 3.506
Four-Factor-adjusted 0.025 0.073 -0.090 0.117 0.403 0.378*** 2.958

M2Q-EPS Raw Return 0.990 1.023 1.036 1.134 1.655 0.665*** 3.439
Four-Factor-adjusted 0.035 0.078 -0.074 0.087 0.402 0.366*** 2.877

M3Q-EPS Raw Return 1.002 1.020 1.035 1.121 1.659 0.657*** 3.460
Four-Factor-adjusted 0.022 0.083 -0.081 0.072 0.433 0.411*** 3.275

Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01.

Both the portfolio sorts and Fama–MacBeth regressions show that stocks with higher bounds have

significantly higher expected returns in the cross-section. It is important to note, however, that because

our theory does not directly speak to expected returns or the pricing of liquidity risk, these results

should not be interpreted as an empirical test of the validity of our bounds. Rather, they should be

seen as another dimension of their usefulness. This exercise may inform future research on the risks

associated with long-term illiquidity as captured by our measure of price impact.

7 Conclusion

This paper reveals a fundamental tension between investor agreement and price impact: when return

volatility is high while portfolio turnover is low, market participants cannot simultaneously disagree

with each other and respond elastically to price changes. Otherwise we would observe much higher

portfolio turnover. This implies that if one acknowledges that investors are not in perfect agreement

with each other, one must also concede to considerable price impact, i.e., that markets are inelastic. In

other words, given observable moments on quantities and prices, investor agreement and price impact

cannot be modeled independently. Highly elastic investors (and thus low price impact) can only be

reconciled with the data if investors exhibit a high degree of agreement with one another.

We formalize this trade-off through a model-free bound, M ≥ σp

σq
×
√

1
ρ − 1, that connects return

36



volatility, portfolio turnover, and investor agreement to the price impact of persistent demand shifts.

Our bounds inform the two competing views on the drivers of asset prices. The first view holds that

trading volume is merely a byproduct of price formation and contains no incremental information be-

yond the representative investor’s demand. The second view posits that trading volume is fundamental

to understanding price movements, as shifts in quantities interact with a non-zero price impact.

Applied to U.S. equities, our bounds imply substantial price impacts of 0.75 to 1.0 for individual

stocks, closely aligning with event study evidence from S&P 500 inclusions and mutual fund flows while

traditional high-frequency liquidity measures fail to explain these price impacts. Our bounds vary

systematically across assets – with larger stocks exhibiting lower price impacts and higher-beta stocks

showing greater impacts – and increase substantially with portfolio aggregation, reaching approximately

2.0 for the aggregate stock market. Our bound provides a diagnostic tool for structural models seeking

to reconcile portfolio turnover and return volatilities, and a sanity check for empirical studies on

investor disagreement and price impact.
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Appendix A Proofs

A.1 Proof of Theorem 1

We prove Theorem 1 under a weaker assumption than Assumption 1:

Assumption A.1. Denote βu
i,S ≡ Cov(ui,t,uS,t)

Var(uS,t)
as the coefficient of regressing the demand shift of

investor i, ui,t, on the aggregate demand shift, uS,t. We have the following regularity condition:

V̂ar
cs

S (
ζi
ζS

)− 2Ĉov
cs

S (
ζi
ζS

, βu
i,S) > 0

We first provide the proof of Theorem 1 under the relaxed assumption A.1, and discuss the intuition

behind the condition.

Proof of Theorem 1. Given the demand curve equation (2) and price equation (4), we have

∆qi,t = ui,t −
ζi
ζS

uS,t,

Let σ2
i ≡ Var(ui,t) denote the variance of investor i’s demand shift, and σiS ≡ Cov(ui,t, uS,t) denote

the covariance between investor i’s demand shift and the aggregate demand shift. The variance of

flows and price are:

σ2
q,i = Var(∆qi,t) = σ2

i − 2
ζi
ζS

σiS +
ζ2i
ζ2S

Var(uS,t)

σ2
p = Var(∆pt) =

1

ζ2S
Var(uS,t)

The size-weighted average flow volatility is:

σ2
q =

∑
i

Siσ
2
q,i

= Êcs
S

[
σ2
i

]
− 2Êcs

S

[
ζi
ζS

σiS

]
+ Êcs

S

[
ζ2i
ζ2S

]
Var(uS,t)

= Êcs
S

[
σ2
i

]
− 2

(
Êcs
S

[
ζi
ζS

]
Êcs
S [σiS ] + Ĉov

cs

S

[
ζi
ζS

, σiS

])
+

(
Êcs
S

[
ζi
ζS

]2
+ V̂ar

cs

S

(
ζi
ζS

))
Var(uS,t)
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Notice that:

Êcs
S

[
ζi
ζS

]
=

1

ζS

∑
i

Siζi = 1

Êcs
S [σiS ] =

∑
i

SiCov (ui,t, uS,t) = Var(uS,t)

The expression can be simplified as:

σ2
q = Êcs

S

[
σ2
i

]
−Var (uS,t)− 2Ĉov

cs

S

[
ζi
ζS

, σiS

]
+ V̂ar

cs

S

(
ζi
ζS

)
Var (uS,t)

Under Assumption A.1 that V̂ar
cs

S ( ζi
ζS
)− 2Ĉov

cs

S ( ζi
ζS
, βu

i,S) > 0, where we note that βu
i,S = σiS

Var(uS,t)
, the

condition becomes:

V̂ar
cs

S

(
ζi
ζS

)
− 2Ĉov

cs

S

[
ζi
ζS

,
σiS

Var(uS,t)

]
> 0

which implies V̂ar
cs

S

(
ζi
ζS

)
Var(uS,t)− 2Ĉov

cs

S

[
ζi
ζS
, σiS

]
> 0.

Therefore:

σ2
q ≥ Êcs

S

[
σ2
i

]
−Var (uS,t)

The ratio of σ2
q to σ2

p is given as:

σ2
q

σ2
p

≥ ζ2S

(
1

Var(uS,t)/Êcs
S

[
σ2
i

] − 1

)
.

Using the definition ρ =
Var(uS,t)

Êcs
S [σ2

i ]
from the main text, we get:

σ2
q

σ2
p

≥ ζ2S

(
1

ρ
− 1

)
.

Taking the square root and using M = 1
ζS

, we have the bound:

M ≥ σp
σq

×
√

1

ρ
− 1

Remarks. As discussed in the main text, introducing heterogeneity in elasticities can increase the

flow volatility for a given level of demand heterogeneity, as different responses to price changes provide
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another reason to trade other than heterogeneity in demand.

Assumption A.1 further relaxes the independence assumption in Assumption 1 by allowing for

the cross-sectional dependence of data-generating processes on the demand shifts and the elasticity,

captured by the cross-sectional covariance between elasticity and the correlation with the aggregate

demand shift, Ĉov
cs

S ( ζi
ζS
, βu

i,S).

The cross-sectional covariance between the elasticity and the correlation with aggregate shocks also

affects the flow volatility. To see this more clearly, note that the condition in Assumption A.1 can also

be expressed in terms of the correlation with the change in price:

Ĉov
cs

S (
ζi
ζS

, βu
i,S) =

1

ζ2S
Ĉov

cs

S (ζi, β
u
i,p)

where βu
i,p =

Cov(ui,t,∆pt)
Var(∆pt)

is the regression coefficient of the demand shift ui,t on the change in price

∆pt. Notice that though it is defined as the loading on the price, the causality runs the other way:

demand shifts move the price, not vice versa.

All else equal, flow volatility can also be high because investors whose demand shifts move the

price more (high βu
i,p) are also less responsive to price changes (Ĉov

cs

S (ζi, β
u
i,p) < 0), and hence their

demand shifts are more manifested in the observed trading. Empirically, large investors, who have

larger weights in the aggregation and hence typically are more represented in the aggregate demand

shifts, tend to be less responsive to price changes in proportion to their size relative to small investors,

often due to trading costs or price impact concerns.

On the contrary, when investors whose demand shifts track the price closer are also more price-

elastic, Ĉov
cs

S ( ζi
ζS
, βu

i,p) > 0, the opposite channel may dampen the observed flow volatility. Intuitively,

their demand shifts are less passed through to the realized trading as they react to the disadvantageous

price changes. When this force is overly strong, we may even end up in a pathological equilibrium

where investors on average sell when they receive positive demand shifts.23

The condition in Assumption A.1 allows for the latter case, but essentially requires that it is

dominated by the increase in flow volatility due to the dispersion in elasticities.
23To be precise, we may have the empirical moment such that Êcs

S [Cov(∆qi,t, ui,t)] < 0. Note that
Êcs

S [Cov(∆qi,t, ui,t)] = Êcs
S [σ2

i − ζi
ζS

Cov(ui,t, uS,t)]. Using the equality Êcs
S [ ζi

ζS
Cov(ui,t, uS,t)] = Var(uS)+Ĉov

cs

S

[
ζi
ζS

, σiS

]
as in the proof, we can show that Êcs

S [Cov(∆qi,t, ui,t)] < 0 when Ĉov
cs

S ( ζi
ζS

, βu
i,S) >

1
ρ
− 1.
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Appendix B Microfoundations

We start with demand curve representations of portfolio choice under CRRA utility in Section B.1.

We then extend the analysis to a learning-from-price model in Section B.2.

B.1 CRRA Utility

Consider the portfolio choice problem of an investor with CRRA utility in a two-period model. With

log-normal returns, the utility maximization gives the standard portfolio choice formula:

PQi

Wi
=

µ−Rf

γiσ2
R

where Wi is the investor’s wealth, γi the risk aversion, µ ≡ E
[
D
P

]
the expected return, Rf the risk-free

rate, and σR the return volatility.

We perturb the portfolio-choice problem around a symmetric equilibrium where PQi

Wi
= 1 with

first-order log-linearization.24 We use lowercase letters to denote the log of the uppercase counterpart,

and use bar and ∆ to indicate the symmetric equilibrium value and the deviation from the original

equilibrium, respectively. We have:

∆qi ≈ − µ̄

µ̄− r̄︸ ︷︷ ︸
δ̄

∆p+
µ̄

µ̄− r̄
E [∆d]−∆ log γi −∆ log σ2

R︸ ︷︷ ︸
ui

(B.1)

In the CRRA model, the demand elasticity δ̄ is determined by the risk free rate and the expected

return, which in the equilibrium is further pinned down by the return volatility and risk aversion; the

demand shifter ui comes from different sources, including changes in expectations about fundamentals

(E [∆d]), changes in risk aversion and uncertainty.

B.2 Learning-From-Price Model à la Hellwig (1980)

We extend the CRRA model to incorporate learning-from-price, adapting the framework from Hellwig

(1980).

To focus on the learning-from-price mechanism, we consider a simplified version where demand

shifts come only from heterogeneous expectations about dividend changes:
24By perturbing around the equilibrium with PQi

Wi
= 1, we simplify the expression by eliminating the change in wealth

on the left-hand side.
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∆qi = −δ̄∆p+ δ̄Ei [∆d] (B.2)

The crucial assumption is that investors form expectations about dividend changes using both a

private signal si and information extracted from the equilibrium price. We specify the information

structure in detail later. Here, we postulate that expected dividend changes are formed as a linear

combination:

Ei [∆d] = αssi + αp∆p (B.3)

where αs and αp are equilibrium coefficients that reflect how much weight investors place on their

private signals versus price information.

Substituting (B.3) into (B.2) gives us the demand curve with learning-from-price:

∆qi = −δ̄∆p+ δ̄ (αssi + αp∆p)

= −δ̄ (1− αp)︸ ︷︷ ︸
ζ

∆p+ δ̄αssi︸ ︷︷ ︸
ui

(B.4)

The key insight is that learning from prices makes demand less elastic: the effective elasticity

ζ = δ̄(1 − αp) is smaller than the elasticity δ̄ under rational expectations. When investors observe a

price increase, they partly interpret it as conveying positive information about fundamentals, leading

them to increase rather than decrease their demand.

To interpret the demand curve in the main text, Equation (B.4) is sufficient. For completeness,

below we provide a full characterization of the equilibrium to pin down the coefficients αs and αp.

Equilibrium Characterization To fully characterize the equilibrium, we need to determine αs and

αp. We consider a market with N agents of respective sizes Si (where
∑

i Si = 1), and eventually take

N to infinity. We also consider noise traders who submit orders un.

Market clearing requires: ∑
i

Si∆qi = 0
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From the demand equation (B.4), market clearing implies:

0 = −ζ∆p+ δ̄αs

∑
i

Sisi + un

⇒ ∆p =
δ̄αssS + un

ζ
(B.5)

where sS ≡
∑

i Sisi is the size-weighted average signal. This can be rewritten as:

∆p =
αs

1− αp

sS +
un
δ̄αs︸︷︷︸
≡sN


where sN represents the effective "noise signal" from noise trading.

Information Structure and Signal Extraction We assume the fundamental follows:

D = D̄ exp

(
∆d− 1

2
σ2
∆d

)

where ∆d ∼ N (0, σ2
∆d).

Each investor receives a private signal si ∼ N (0, σ2
s) with correlation structure:

Cov(si, sj) = ρσ2
s for i ̸= j (B.6)

Cov(si,∆d) = βσ2
s (B.7)

In the limit as N → ∞, the conditional expectation of ∆d given signals si and the aggregate signal

sS + sN (a linear function of the price) is:

E [∆d | si, sS + sN ] =
βσ2

N

σ2
N + σ2

sρ(1− ρ)
si +

βσ2
s(1− ρ)

σ2
N + σ2

sρ(1− ρ)
(sS + sN ) (B.8)

where σ2
N is the variance of the noise signal sN . The derivation is provided at the end of this

section.

Using the price equation, we can express this conditional expectation in terms of si and ∆p:

E [∆d | si,∆p] = αssi + αp∆p
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Matching coefficients, we obtain:

αs =
βσ2

N

σ2
N + σ2

sρ(1− ρ)
(B.9)

αp =
σ2
s(1− ρ)

σ2
N + σ2

s(1− ρ)
(B.10)

Substituting back into the demand equation:

∆qi = δ̄
βσ2

N

σ2
N + σ2

sρ(1− ρ)
si︸ ︷︷ ︸

ui

− δ̄
σ2
N

σ2
N + σ2

s(1− ρ)︸ ︷︷ ︸
ζ

∆p

The final elasticity expression reveals the trade-off inherent in learning from prices. On one hand,

when private signals are less correlated across investors (low ρ), more new information can be extracted

from the price, making the market more inelastic. On the other hand, when noise trader flows are

larger (high σ2
N ), the price becomes a less precise signal, making the market more elastic.

Derivation of the conditional expectation formula

Proof. The signal covariance matrix is given as (treating each i as infinitesimally small):

Σs = Var




si

sS + sN


 =


σ2
s ρσ2

s

ρσ2
s ρσ2

s + σ2
N


To compute the (2,2) entry, notice that:

Var(sS) = Var

(∑
i

Sisi

)
= σ2

s

∑
i

S2
i +

∑
i ̸=j

SiSjρ


= σ2

s

(1− ρ)
∑
i

S2
i + ρ

∑
i

∑
j

SiSj


= σ2

s (ρ+ (1− ρ)H)

where H =
∑

i S
2
i . Taking the limit as N → ∞, we have H → 0, so Var(sS) = ρσ2

s .
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The covariance between signals and ∆d is:

Cov(∆d, si) = βσ2
s

Cov(∆d, sS + sN ) = βσ2
s

Thus Σs,∆d =


βσ2

s

βσ2
s

.

The conditional expectation is given by ΣT
s,∆dΣ

−1
s


si

sS + sN

. Computing this yields the formula

in the main text.

Appendix C Price Impact Bound with Substitution across Assets

When strong substitution exists across assets, the interpretation of the price impact bound requires

extra care. To illustrate the point, in this section, we consider a classic arbitrage example: a single-

name ETF e and its underlying stock s.

We start with the single-price representation of the demand system, as derived in the main text:

∆qi,t(s) = − ζ(s) (1−Qs←eQe←s)︸ ︷︷ ︸
ζ̃(s)= 1/M(s)

∆pt(s) + Qs←e uS,t(e) + ui,t(s)︸ ︷︷ ︸
ũi,t(s)

∆qi,t(e) = − ζ(e) (1−Qe←sQs←e)︸ ︷︷ ︸
ζ̃(e)= 1/M(e)

∆pt(e) + Qe←s uS,t(s) + ui,t(e)︸ ︷︷ ︸
ũi,t(e)

(C.1)

To illustrate potential issues arising from strong cross-asset substitution, we consider the following

numerical example.

A numerical example Consider an asymmetric market between the ETF and stock: the ETF is

ten times smaller than the stock and less actively traded (small σq(e)), but the no-arbitrage condition

ensures the ETF price closely tracks the stock.

Numerically, let the price volatilities be σp(s) = σp(e) = 0.1 with near-perfect correlation, corr(∆ps,∆pe) ≈

1.00. Let the flow volatility be σq(s) = 0.1 for the stock, and σq(e) = 0.01 for the ETF. For conve-

nience, assume investor agreement of ρ(s) = ρ(e) = 0.5, so
√

1
ρ − 1 = 1. This gives aggregate demand
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shift volatilities σuS(s) = 0.1 and σuS(e) = 0.01, respectively.25 For simplicity, assume demand shifts

are uncorrelated across assets – introducing correlation does not change the main point.

The moments we specified above can be induced by the following demand elasticity matrix:

Γ =


−ζ(s) = −100.3 ζ(s, e) = 99.7

ζ(e, s) = 998.5 −ζ(e) = −1002.5


Under this demand system, we have the following reduced-form moments:

M(s) = 1, M(e) ≈ 0.1, Qs←e ≈ 0.099, Qe←s ≈ 9.95, A = 1−Qs←eQe←s ≈ 0.01

We choose the demand elasticity matrix Γ to be asymmetric, reflecting the size difference between

markets: the stock market is ten times larger than the ETF market. Consequently, investor demand for

the stock responds less to ETF price changes than vice versa. In terms of demand pass-throughs, a 1%

demand shift to the ETF translates to approximately 0.1% effective demand shift to the stock, while

a 1% demand shift to the stock generates an effective 10% demand shift to the ETF. This asymmetry

illustrates when our bound remains appropriate despite strong substitution, and when it becomes less

informative.

In this context, we interpret the key objects in the bound: the price impact M(s) and the investor

agreement ρ(s).

Interpreting price impact M. As discussed in the main text, our bound correctly recovers the

price impact M(·). However, under strong substitution, price impact differs substantially from the

reciprocal of price elasticity ζ(·). In this example, the price impact for the stock is approximately 1,

while the own-price elasticity is around 100.

Understanding this difference requires recognizing that elasticity is a partial-equilibrium concept

holding all other prices constant, while price impact incorporates general-equilibrium effects. Elasticity

captures demand response to stock price changes while holding the ETF price constant. Given the close

arbitrage relationship, investors are highly sensitive to price discrepancies between the ETF and stock,

leading to aggressive arbitrage trading. Conversely, price impact captures how stock prices respond
25Notice that by replacing the endogenous prices from the demand equation we again have ∆qi,t(·) = ui,t(·)− uS,t(·),

hence σq(·) = σuS(·)
√

1
ρ(·) − 1.
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to demand shocks accounting for general-equilibrium effects: the demand shift also moves ETF prices,

which recursively affects stock demand. The amplification factor A := (1−Qn←n′ Qn′←n) illustrates

this feedback loop: a 1% stock demand shift generates a Qn′←n ≈ 9.95% effective demand shift to the

ETF, which feeds back to the stock as Qn←n′Qn′←n ≈ 0.99%.

Under very strong substitution, our bound identifies the price impact but becomes uninformative

about the underlying elasticity. Which parameter matters depends on the research question. For

understanding market-wide price responses, the reduced-form price impact is often the key quantity

of interest – the reciprocal of the price impact can be loosely interpreted as the price elasticity of the

combined stock-ETF system. However, if the goal is estimating arbitrage strength between the stock

and ETFs, our bound is ill-suited. Such applications require cross-sectional identification strategies that

compare differential asset responses to shocks, as developed in Chaudhary et al. (2023) and Haddad

et al. (2025).

Interpreting investor agreement ρ. With multiple assets, the effective demand shift for one asset

ũi,t(s) depends not only on ui,t(s) but also on the aggregate demand shift to its substitute uS,t(e).

This substitute term enters because it moves substitute prices, effectively shifting the demand curve

for asset s through substitution effects. The coefficient for uS,t(e) is Qs←e, justifying our interpretation

as demand pass-through: it measures the effective demand shift to asset s from a unit aggregate demand

shift to e.

Investor agreement ρ measures the comovement of the total demand shifts ũi,t(s) across investors,

which in this case has an additional common factor: the aggregate demand shifts to the substitute

uS,t(e).

Under strong substitution, high investor agreement ρ can emerge even when investors strongly

disagree on asset-specific fundamentals. Consider the ETF in our example: even though investors

may have heterogeneous ETF demand shifts ui,t(e), they all recognize the close arbitrage relationship

between the ETF and underlying stock. Since the underlying stock is a much larger market and

much more actively traded than the ETF, stock fundamental shifts passed to the ETF Qe←suS,t(s)

dominate ETF-specific demand shifts ui,t(e). In our numerical example, Var(Qe←suS,t(s)) ≈ 1 while

Var(uS,t(e)) ≈ 0.0001.

As uS,t(s) is reflected in the stock price and shared across investors, this creates high agreement

ρ. If an econometrician naively applies the bound to the ETF using ρ = 0.5 for asset-specific demand

shifts, they would recover a counterfactually high price impact M(e) ≈ 0.1
0.01

√
1
0.5 − 1 ≈ 10. This
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overestimate occurs because the true agreement incorporating substitution effects is close to 0.9999.

For ρ close to one, the bound is highly nonlinear and less informative.

Having close substitutes does not automatically invalidate the bound – it depends on the magnitude

of demand shifts passed from substitutes. In our example, the bound remains informative for the

stock: given the relative market size and activity, demand shifts originating from the ETF market are

negligible (Qs←e ≈ 0.1 and σuS(e) = 0.01) compared to stock-specific demand shifts σuS(s) ≈ 0.1. In

this case, the investor agreement ρ is still mostly about the stock fundamentals. Using our bound, one

can recover the price impact for the stock as M(s) = 0.1
0.1

√
1
0.5 − 1 ≈ 1, close to the true value.

Appendix D Data Construction Details

D.1 Flow Measures

Quarterly trades ∆Qi,t(n) and changes in shares outstanding ∆Q̄t(n) = Q̄t(n)− Q̄t−1(n) are adjusted

for stock splits in quarter t. We construct trades by the residual investor as ∆Q0,t(n) = ∆Q̄t(n) −∑I
i=1∆Qi,t(n). All results in the paper are robust to omitting the residual sector and constructing

Q̄t(n) (and the corresponding size weights) as the sum of institutional shares held. However, we

prefer the construction of the residual sector as this effectively accounts for trades by the institutional

sector as a whole, which would otherwise be omitted. Furthermore, scaling by institutional shares

held leads to some large outliers for smaller stocks that are held by very few institutions. Quarterly

trades in percent are denoted by qi,t(n) =
∆Qi,t(n)
Qi,t−1(n)

. To reduce the effect of outliers, we also use the

Davis-Haltiwanger growth rate (Davis and Haltiwanger, 1992), following Gabaix and Koijen (2021)

qi,t(n) =
2(Qi,t(n)−Qi,t−1(n))
Qi,t(n)+Qi,t−1(n)

. The results are robust to either definition. When using portfolio turnover

as the L1 approximation of flow volatility (the size-weighted variance of qi,t(n)), there is no need to

express trades in percent, as portfolio turnover sums raw trades ∆Qi,t(n) relative to supply. This makes

portfolio turnover a more robust estimator, less sensitive to outliers, and the treatment of extensive

versus intensive margin trades.

D.2 Portfolio Turnover at the Fund Level

In the main text, we compute portfolio turnover at the 13F institution level to ensure comprehensive

coverage. However, for asset managers with multiple subsidiary funds, institutional-level portfolio

turnover excludes intrafamily transactions, which may potentially explain why portfolio turnover is

smaller than gross volumes. This section uses disaggregated mutual fund holdings data to demonstrate
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that netting effects from within-institution aggregation are negligible.

We disaggregate fund families in the 13F institutional holdings data (S34 file) using Thomson

Reuters mutual fund holdings data (S12 file). Using the S12-S34 link table, we match mutual fund

holdings to their corresponding asset managers in the 13F data. For asset managers whose total

holdings exceed the sum of their subsidiary fund holdings, we construct a residual entity representing

the difference between institutional and mutual fund holdings. We retain institutions in the 13F data

that are not matched to any mutual fund. We then compute portfolio turnover from this merged

dataset using the same methodology as in the main text.

As an additional validation, we construct fund-level portfolio turnover using an alternative source:

the CRSP Survivor-Bias-Free US Mutual Fund Database, which provides comprehensive coverage of

mutual funds and ETFs but excludes other investor types. Since these funds account for a smaller

share of market ownership than the broader 13F universe, we normalize portfolio turnover within the

dataset – dividing net trading activity by the total shares held by all CRSP funds, rather than by

shares outstanding. Normalizing by shares outstanding would yield much smaller portfolio turnover

and render it noncomparable to that based on 13F data.

Figure D.1 compares portfolio turnover measures computed using these two approaches with our

baseline institutional-level measures. The red line shows the portfolio turnover computed from the

disaggregated 13F data using S12 mutual fund holdings files. The blue line presents portfolio turnover

computed from the CRSP Survivor-Bias-Free US Mutual Fund Database. Despite being computed

from different data sources and aggregation levels, the baseline institutional portfolio turnover is very

close to the fund-level measures, confirming that netting effects from within-institution aggregation

are negligible.
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Figure D.1: Portfolio Turnover at the Fund Level
The figure compares portfolio turnover measures at the 13F institutional level with portfolio turnover computed at the
fund level. Portfolio Turnover (in black) shows the baseline portfolio turnover computed from 13F institutional holdings
data. Portfolio Turnover Disaggregated (in red) presents portfolio turnover computed from 13F data disaggregated using
Thomson Reuters S12 mutual fund holdings files. Portfolio Turnover Mutual Fund & ETFs (in blue) presents portfolio
turnover computed from the CRSP Survivor-Bias-Free US Mutual Fund Database, normalized within the dataset.
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D.3 Measuring Investor Agreement from I/B/E/S

We measure investor agreement using analyst forecast data from I/B/E/S, leveraging the idea that

the cross-sectional distribution of analyst beliefs serves as a proxy for the cross-sectional distribution

of investor demand. This section details the sample construction and methodology for estimating the

agreement parameter ρ.

D.3.1 Data Sources and Sample Selection

We obtain analyst earnings forecasts from the I/B/E/S Detail History database (ibes.det_epsus).

We only use S&P 500 constituent firms to ensure sufficient number of forecasts. We then link I/B/E/S

tickers to CRSP identifiers through a multi-step process: first matching I/B/E/S tickers to Compustat’s

gvkey using the security linking table (comp.security), then connecting gvkey to CRSP’s permno

through the CCM linking table using link types LU and LC. Finally, we filter for forecasts made while

firms were S&P 500 constituents using historical index membership data.

We focus on two types of forecasts:

• Quarterly Earnings-per-Share (EPS) forecasts (FPI codes 6, 7, 8, 9): Representing 1-
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through 4-quarter ahead EPS forecasts;

• Long-term growth (LTG) forecasts (FPI code 0): Representing long-term earnings growth

rates.

D.3.2 Construction of Forecast Updates

We identify forecasters at the institution level (estimator, brokerage house or sell-side institution), to

be consistent with the holdings data which is also at the 13F institution level.

For each forecaster-firm pair, we track how forecasts evolve over time:

EPS Forecast Updates: For quarterly EPS forecasts, we track how forecasters update their fore-

casts for a specific earnings announcement as it approaches. Each forecast target is uniquely identified

by the firm and fiscal period end date (fpedats), with the actual earnings released on anndats_act.

We define the forecast horizon as the number of days between when a forecast is made (anndats)

and when actual earnings are released (anndats_act), converted to quarters by dividing by 90. We

retain forecasts made within 400 days of the actual release and round horizons to the nearest quarter

with a 30-day tolerance window. When multiple forecasts exist for the same forecaster-target-horizon

combination, we select the earliest forecast.

Denote the forecasted EPS by forecaster i at time t for firm n and horizon h as fh
i,t(n). Updates

are then calculated as percentage changes between consecutive horizons for the same target:

∆fh
i,t(n) = fh

i,t(n)− fh+1
i,t−1(n)

By construction, fh
i,t(n) is around 90 days later than fh+1

i,t−1(n), matching the frequency of holdings

data.

LTG Forecast Updates: Long-term growth forecasts differ from EPS forecasts as they lack a specific

target date and thus no natural horizon measure. For these forecasts, we track quarter-to-quarter

changes by assigning each forecast to a quarter based on its announcement date (anndats). To avoid

partial quarter effects, forecasts made 45 or more days into a quarter are assigned to the following

quarter. For each forecaster-firm-quarter combination, we retain only one forecast (the earliest if

multiple exist). Updates are then calculated as simple differences (not percentages) between consecutive
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quarterly LTG forecasts:

∆fLTG
i,t (n) = fLTG

i,t (n)− fLTG
i,t−1(n)

where fLTG
i,t (n) is the long-term growth forecast by forecaster i in quarter t for firm n.

D.3.3 Estimation of Agreement ρ

Following our theoretical framework, we estimate forecaster agreement ρ(n) as the adjusted R2 from

regressing individual forecast updates on time fixed effects. Specifically, for each firm n and forecast

type (EPS at horizon h or LTG), we then estimate:

∆f̂h
i,t(n) = ∆fh

t (n) + ϵhi,t(n) for each h ∈ {1, 2, 3, LTG}

where ∆f̂h
i,t(n) = ∆fh

i,t(n)−∆fh
i (n) are the demeaned forecast updates within each forecaster-horizon-

firm combination, and ∆fh
t (n) are time fixed effects. The adjusted R2 from this regression captures

the proportion of forecast update variation explained by common time effects, serving as our measure

of agreement ρhEPS(n).

We use adjusted R2 as opposed to the original R2, as the latter can incur a large bias when the

number of forecasters is small: When there are only N forecasters, the expected raw R2 will be around

1
N even with completely independent forecasts (hence the population R2 is 0), while the adjusted R2

have an expectation of 0 in this case. However, the adjusted R2 can be negative in the sample. In

these rare cases (mostly occur in the LTG forecasts when number of forecasters is small), we truncate

the adjusted R2 at 0.

To further reduce noises due to unbalanced panels, we apply the following filters before estimating

ρhEPS(n): For each firm-horizon pair in quarterly EPS forecasts, we drop forecasters with less than 5

periods of forecast updates, and drop periods with less than 5 forecasters per firm-horizon combination.

We repeat this filter iteratively until no more forecasters or periods can be dropped. The LTG forecasts

are more sparse, hence we lower the threshold for the number of periods of forecast updates per

forecaster-firm-quarter combination and the number of forecasters per firm-quarter combination to 4

and 3, respectively. Table D.1 reports the average characteristics of the final sample.
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Table D.1: I/B/E/S Average Number of Forecasters and Updates
The table reports average characteristics of the I/B/E/S forecast sample used to estimate investor homogeneity. “N
Periods” refers to the average number of time periods with forecasts per firm-horizon pair. “N Forecasters” is the average
number of unique estimators covering each firm-horizon pair. “N Updates per Period” is the average number of forecast
updates per firm-period. “N Updates” is the total average number of forecast updates per firm. 1Q-3Q refer to one-quarter
through three-quarters ahead EPS forecasts, and LTG refers to long-term growth forecasts.

Horizon N Periods N Forecasters N Updates per Periods N Updates

1Q 44.2 26.0 11.5 510.2

2Q 41.3 25.0 10.9 452.4

3Q 37.6 22.6 10.1 379.8

LTG 16.5 5.2 3.5 57.7

D.4 Estimate Agreement ρ(n) Structurally

We use a workhorse structural model, designed to jointly match portfolio holdings and prices, to

infer stock-level ρ. To this end, we take Koijen and Yogo (2019), and estimate stock-level agreement

ρ from the investor-level demand shifts implied by their model. We acknowledge that using the ρ

computed in Koijen and Yogo (2019) for our bounds requires assuming that elasticities estimated from

portfolio holdings in levels correspond to quarterly elasticities. However, van der Beck (2022) shows

that such level-based estimates instead capture long-run elasticities—extending beyond a one-year

horizon. The structurally inferred disagreement should therefore be interpreted only as suggestive

evidence of disagreement. Koijen and Yogo (2019) propose the following logit demand curve each

investor i and quarter t

log
wi,t(n)

wi,t(0)
= βi,tmet(n) +Xt(n)βi,t + ϵi,t(n) (D.1)

which can be microfounded from mean-variance optimal portfolio choice under specific coefficient

constraints. met(n) = logMEt(n) is the market cap of stock n and Xt(n) includes the characteristics

book equity, dividends-to-book equity, market beta, profitability, and investments. We estimate (D.1)

via linear GMM using KY’s mandate-based instrument and pooling investors with fewer than 1000

cross-sectional holdings by their assets under management. The moment condition is given by

Et[ϵi,t(n)|m̂ei,t(n), Xt(n)] s.t. βi,t < 1 ∀i, t.

where m̂ei,t(n) is the counterfactual log market equity obtained if every institution held an equal-

weighted portfolio given its investment universe. For each investor, stock, and date, we extract the
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quarterly demand shifts ui,t(n) from

ui,t(n) = ∆ logQi,t(n)− (β̂i,t − 1)∆mei,t(n) (D.2)

where ∆ logQi,t(n) and ∆mei,t(n) are directly observable trades and changes in market equity, and

β̂i,t is the estimated coefficient on log market equity obtained from moment condition (D.4). Let

ũi,t = ui,t(n)− ūi(n) denote the time-series demeaned demand, and Si,t(n) =
wi,t(n)Ai,t∑
i wi,t(n)Ai,t

the investor-

level size-weights for each stock. We then compute stock-level measure of investor agreement as

ρ(n) = 1−
∑

t

∑
i Si,t−1(ũi,t − ũS,t)

2∑
t

∑
i Si,t−1ũ2i,t

(D.3)

where ũS,t is the size-weighted average of the time-series demeaned demand shifters ũi,t. Panel a) of

Figure D.2 plots the ρ(n) for each stock. Because investor-level βi,t are estimated with considerable

noise, which may artificially inflate the cross-investor variation in ui,t(n) and therefore artificially deflate

ρ(n), we also compute group-level β̂i,t by averaging across investors with the same 13F typecode. We

then infer ui,t(n) by plugging in the averaged type-specific β̂i,t and compute the corresponding ρ (Panel

b). Panel c) plots the average ρ along with the average bound for the cross-section of US stocks.

Figure D.2: Implied Stock-level Agreement ρ(n) from KY (2019)
Panel a) plots distribution of stock-level ρ(n) implied by KY using investor-specific elasticities. Panel b) plots distribution
of ρ(n) under elasticities that vary by investor type. Panel c) plots the average ρ implied by KY along with the average
bound.
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D.5 Flow-Induced Trades by Mutual Funds

Our construction of flow-induced trades by mutual funds closely follows Lou (2012). We use quarterly

mutual fund flows from the CRSP mutual fund survivorship-bias-free database. We set quarterly flows

less than -100% or greater than 200% to missing and only include funds for which the total assets

computed from their portfolio holdings are between 75% and 120% of the total net assets (TNA)
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reported by CRSP. Let Fi,t denote the quarterly flow (in dollars) into fund i. Quarterly flow-induced

demand is then simply given by summing over all hypothetical trades if flows were invested in line

with previous portfolio weights wi,t−1(n):

FITt(n) =

∑I
i=1 Fi,twi,t−1(n)

MVt−1(n)
(D.4)

where MVt−1(n) is the total market cap of stock n as of the previous quarter.

Appendix E Additional Figures and Tables

Figure E.1: Portfolio Turnover versus Flow Volatility
The figure plots the relationship between flow volatility σq(n) =

√∑
i Si(n)σ2

q,i(n) and average portfolio turnover√
π
2
E[

∑
i |∆Qi|
Q∗ ], which are size-weighted averages of L2 and L1 norms respectively.
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Figure E.2: Empirical Relevance of ρ
Panel a) plots the derivative ∂M

∂ρ
= − 1

2
M̃ 1

ρ2

√
1/ρ− 1 as a function of ρ for the average US stock. Panel b) decomposes

the variance of logMEPS into its underlying components log σp, log σq, logD where D =
√

1/ρ− 1.

(a) ∂M
∂ρ for varying levels of ρ

0.2 0.4 0.6 0.8 1.0
20

15

10

5

0

d d

(b) Variance Decomposition of logMEPS

log p log q log

25

0

25

50

75

100

125

Va
ria

nc
e (

%
)

Table E.1: Validation: Flow-Induced Trades
The table summarizes the empirical validation of our bounds. We report the Panel coefficient of regressing quarterly
stock-returns onto flow-induced trades (FIT) interacted with our bound M, as well as the interaction with quintile
dummies of M. Formally, rt(n) = αt + β1FITt(n) + β2Mt(n) + β3

(
Mt(n) × FITt(n)

)
+ ϵt(n). T-stats are computed

using standard errors clustered by date.

Ret.

(1) (2) (3)

FIT 3.820***
(0.510)

2.635***
(0.636)

MEPS 0.004
(0.004)

FIT × MEPS 1.256*
(0.565)

FIT × MEPS quintile: 1 2.755***
(0.624)

FIT × MEPS quintile: 2 3.175***
(0.588)

FIT × MEPS quintile: 3 4.029***
(0.577)

FIT × MEPS quintile: 4 4.152***
(0.718)

FIT × MEPS quintile: 5 5.485***
(0.938)

Date x x x
MEPS quintile - - x

Observations 152862 152862 152862
R2 0.249 0.250 0.250
R2 Within 0.004 0.005 0.005

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01,
∗ ∗ ∗ p < 0.001. Format of coefficient cell: Co-
efficient (Std. Error)
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Table E.2: Validation: S&P500 Inclusions
The table summarizes the price impact of index inclusions and their relationship with our bound. We report the
coefficient of regressing (signed) abnormal event returns during S&P500 index reconstitutions onto the bound M. T-
stats are computed using standard errors clustered by date. Columns (1)–(3) report results for the full sample period,
while columns (4)–(6) restrict the analysis to the pre-2000 subsample.

Abnormal Return

(1) (2) (3) (4) (5) (6)

MEPS 0.058*
(0.025)

0.110*
(0.046)

MEPS quintile: 1 0.046***
(0.014)

-0.015
(0.028)

MEPS quintile: 2 0.082***
(0.024)

0.058
(0.032)

MEPS quintile: 3 0.073***
(0.016)

0.082**
(0.028)

MEPS quintile: 4 0.076***
(0.016)

0.082**
(0.029)

MEPS quintile: 5 0.140***
(0.024)

0.174***
(0.039)

Intercept 0.080***
(0.008)

0.039
(0.021)

0.088***
(0.016)

-0.002
(0.039)

Observations 837 686 686 390 239 239
R2 0.021 0.036 0.040 0.038 0.091 0.096
Adj. R2 0.017 0.029 0.027 0.028 0.072 0.061

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p < 0.001.
Format of coefficient cell: Coefficient (Std. Error)

Table E.3: Flow-Induced Trading: Alternative Impact Measures
The table summarizes the coefficient of regressing quarterly stock-returns onto flow-induced trades (FIT) interacted with
our bound M, the simplified bound M̃, the bound constructed from CRSP total volume σp

CRSP Vol. , as well as Amihud
liquidity. T-stats are computed using standard errors clustered by date.

Ret.

MEPS M̃ σp

CRSP Vol.Amihud Illiquidity
(1) (2) (3) (4)

FIT 2.635***
(0.636)

2.505***
(0.622)

3.376***
(0.574)

3.772***
(0.568)

M 0.004
(0.004)

0.004
(0.005)

0.023
(0.012)

-0.001***
(0.000)

FIT × M 1.256*
(0.565)

1.519*
(0.623)

2.352
(1.277)

0.014
(0.050)

Date x x x x

Observations 152862 152862 152862 152862
R2 0.250 0.250 0.250 0.250
R2 Within 0.005 0.005 0.005 0.005

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p
< 0.001. Format of coefficient cell: Coefficient (Std.
Error)
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Table E.4: S&P500 Inclusions: Alternative Impact Measures
The table summarizes the price impact of index inclusions and their relationship with our bound. We report the
coefficient of regressing (signed) abnormal event returns during S&P500 index reconstitutions onto the bound M, the
simplified bound M̃, the bound constructed from CRSP total volume σp

CRSP Vol. . T-stats are computed using standard
errors clustered by date.

Abnormal Return

MEPS M̃ σp

CRSP Vol.Amihud Illiquidity
(1) (2) (3) (4)

M 0.058*
(0.025)

0.114***
(0.027)

0.062
(0.046)

0.008
(0.004)

log(ME) -0.000
(0.013)

0.008
(0.011)

0.007
(0.013)

0.003
(0.014)

β 0.009
(0.011)

0.007
(0.010)

0.018
(0.010)

0.020
(0.010)

Dividend
BE 0.011

(0.008)
0.005

(0.007)
0.005

(0.007)
0.008

(0.008)
Profit -0.021*

(0.010)
-0.023*
(0.009)

-0.025**
(0.009)

-0.021*
(0.010)

Observations 686 837 837 666
R2 0.036 0.049 0.025 0.027
Adj. R2 0.029 0.043 0.019 0.020

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p
< 0.001. Format of coefficient cell: Coefficient (Std.
Error)

Figure E.3: Price Impact at Different Horizons
The figure plots the stock-level p/q volatility ratio M̃ for the average stock from 1990 to 2024. M̃ uses portfolio turnover
and return volatility at the daily, quarterly, and annual frequency.
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Table E.5: Monthly Fama-MacBeth Regressions of Stock Returns
This Table presents monthly Fama-MacBeth regressions of stock returns on price impact bound measures. The dependent
variable is the monthly four-factor-adjusted return of month t, based on the four factors from Ken French’s website (MKT,
SMB, HML, and UMD), where the factor loadings are estimated in the preceding 60 months. The independent variables
are the natural logs of our five empirical measures of the price impact bound. We estimate a cross-sectional regression
in each month and then report the time series means and the t-statistics (in parentheses). We also report the time-series
averages of the number of observations and adjusted R2 of the cross-sectional regressions. All regressions include a
constant, which is not reported for brevity. t-statistics are calculated using Newey-West robust standard errors with six
lags.

Dependent Variable: Four-Factor-adjusted Returns

ln(M̃) 0.340***
(4.51)

ln(MLTG) 0.281***
(3.77)

ln(M1Q EPS) 0.292***
(3.92)

ln(M2Q EPS) 0.269***
(3.49)

ln(M3Q EPS) 0.281***
(3.65)

Adj. R2 0.004 0.003 0.003 0.003 0.003
Avg. Obs 996 1023 1023 1023 1023
# Month 501 428 428 428 428

Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01.
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